The extensive morbidity and mortality caused by influenza A viruses worldwide prompts the need for a deeper understanding of the host immune response and novel therapeutic and/or prophylactic interventions. In this study, we assessed the sublingual route as an effective means of delivering probiotics against influenza virus in mice. In addition, IgA levels, NK cell activity, T cell activation, and cytokine profiles in the lungs were examined to understand the mechanism underlying this protective effect. Sublingual administration of Lactobacillus rhamnosus provided enhanced protection against influenza virus infection by enhancing mucosal secretory IgA production, and T and NK cell activity. Moreover, interleukin (IL)-12 levels in the lungs increased significantly. Conversely, IL-6 and tumor necrosis factor alpha levels in the lungs decreased significantly. On the basis of these promising findings, we propose that the sublingual mucosal route is an attractive alternative to mucosal routes for administering probiotics against influenza virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2013.03.013DOI Listing

Publication Analysis

Top Keywords

influenza virus
16
sublingual administration
8
administration lactobacillus
8
lactobacillus rhamnosus
8
protection influenza
8
virus infection
8
probiotics influenza
8
cell activity
8
levels lungs
8
influenza
5

Similar Publications

Background: In China many respiratory pathogens stayed low activities amid the COVID-19 pandemic due to strict measures and controls. We here aimed to study the epidemiological and clinical characteristics of pediatric inpatients with Mycoplasma pneumoniae pneumonia (MPP) after the mandatory COVID-19 restrictions were lifted, in comparison to those before the COVID-19 pandemic.

Methods: We here included 4,296 pediatric patients with MPP, hospitalized by two medical centers in Jiangsu Province, China, from January 2015 to March 2024.

View Article and Find Full Text PDF

Combating COVID-19 and its co-infection by Aspergillus tamarii SP73-EGY using in vitro and in silico Studies.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt.

The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses.

View Article and Find Full Text PDF

Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.

View Article and Find Full Text PDF

Kinetics and Optimality of Influenza A Virus Locomotion.

Phys Rev Lett

December 2024

Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.

Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!