Lipidic spherulites: formulation optimisation by paired optical and cryoelectron microscopy.

Eur J Pharm Biopharm

Université Paris-Descartes - Paris Cité Sorbonne, Faculté des sciences pharmaceutiques et biologiques, Unité de Pharmacologie Chimique et Génétique et d'Imagerie, Paris, France. Electronic address:

Published: November 2013

Objective of this study was to assess the various steps leading to spherulite obtention by means of optical and cryoelectron microscopy. The formulation, resting and hydration steps were optimised. Green-based process and organic-based process were compared. It was found that spherulites could be obtained only when two key steps were followed: a prior resting phase of excipients and the shearing stress of the hydrated excipients. Moreover, the new formulation under study formed spherulites in the 100-200 nm range, which is smaller than previously reported spherulites. Such laboratory scale optimised process led the integration of spherulites in a larger number of prospective studies. Indeed, we finally showed that the encapsulated payload of a hydrophobic compound, such as the anti-angiogenic agent fisetin, was increased to a much higher degree than with a liposomal encapsulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2013.02.016DOI Listing

Publication Analysis

Top Keywords

optical cryoelectron
8
cryoelectron microscopy
8
lipidic spherulites
4
spherulites formulation
4
formulation optimisation
4
optimisation paired
4
paired optical
4
microscopy objective
4
objective study
4
study assess
4

Similar Publications

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

Cone cGMP-phosphodiesterase (PDE6) is the key effector enzyme for daylight vision, and its properties are critical for shaping distinct physiology of cone photoreceptors. We determined the structures of human cone PDE6C in various liganded states by single-particle cryo-EM that reveal essential functional dynamics and adaptations of the enzyme. Our analysis exposed the dynamic nature of PDE6C association with its regulatory γ-subunit (Pγ) which allows openings of the catalytic pocket in the absence of phototransduction signaling, thereby controlling photoreceptor noise and sensitivity.

View Article and Find Full Text PDF

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network.

View Article and Find Full Text PDF

Determining structures of RNA conformers using AFM and deep neural networks.

Nature

December 2024

Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Much of the human genome is transcribed into RNAs, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded-are conformationally heterogeneous and flexible, which is a prerequisite for function, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold for protein structure prediction do not apply to RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!