Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Guzmania monostachia is an epiphyte tank bromeliad capable of up-regulating crassulacean acid metabolism (CAM) in response to several environmental stimuli, including drought and light stress. In other plant species, abscisic acid (ABA) and nitric oxide (NO) seem to be involved in CAM induction. Because the leaves of tank bromeliads perform different functions along their length, this study attempted to investigate whether ABA and NO are involved in regulation of CAM expression in this species by quantifying these compounds in apical and basal portions of the leaf, and whether there would be differences in this event for each leaf portion. Detached leaves exposed to a 30% polyethylene glycol solution showed a significant upregulation of CAM on the seventh day of treatment only in the apical portion, as indicated by nocturnal acid accumulation and phosphoenolpyruvate carboxylase (PEPC) activity. On the three days prior to CAM induction, ABA, NO and H₂O₂ were quantified. The amounts of ABA were higher in PEG-exposed leaves, along their entire length. NO, however, was higher only in the apical portion, precisely where CAM was up-regulated. H₂O₂ was higher only in the basal portion of PEG-exposed leaves. Our results suggest that ABA might be a systemic signal to drought, occurring in the entire leaf. NO and H₂O₂, however, may be signals restricted only to the apical or basal portions, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2013.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!