Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607962 | PMC |
http://dx.doi.org/10.1016/j.chembiol.2013.01.011 | DOI Listing |
J Fish Biol
January 2025
Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Animal growth is a fundamental component of population dynamics, which is closely tied to mortality, fecundity, and maturation. As a result, estimating growth often serves as the basis of population assessments. In fish, analysing growth typically involves fitting a growth model to age-at-length data derived from counting growth rings in calcified structures.
View Article and Find Full Text PDFJ Clin Med
January 2025
European Laboratory for Food Induced Diseases, University of Naples Federico II, 80131 Naples, Italy.
Childhood nutrition plays an important role in the promotion of long-term health. Introducing solid foods in alignment with the Mediterranean Diet during weaning fosters a preference for healthy foods early in life. However, access to nutritious diets remains a challenge in underserved communities.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan 333326, Taiwan.
The proliferation of sophisticated counterfeiting poses critical challenges to global security and commerce, with annual losses exceeding $2.2 trillion. This paper presents a novel physics-constrained deep learning framework for high-precision security ink colorimetry, integrating three key innovations: a physics-informed neural architecture achieving unprecedented color prediction accuracy (CIEDE2000 (ΔE00): 0.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Information Network Center, Chengdu University, Chengdu 610106, China.
Airborne transient electromagnetic (ATEM) surveys provide a fast, flexible approach for identifying conductive metal deposits across a variety of intricate terrains. Nonetheless, the secondary electromagnetic response signals captured by ATEM systems frequently suffer from numerous noise interferences, which impede effective data processing and interpretation. Traditional denoising methods often fall short in addressing these complex noise backgrounds, leading to less-than-optimal signal extraction.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Autmatic Control, University of Kaiserslautern-Landau, 67653 Kaiserslautern, Germany.
Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!