Detecting non-Abelian anyons by charging spectroscopy.

Phys Rev Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: March 2013

Observation of non-Abelian statistics for the e/4 quasiparticles in the ν = 5/2 fractional quantum Hall state remains an outstanding experimental problem. The non-Abelian statistics are linked to the presence of additional low energy states in a system with localized quasiparticles, and, hence, an additional low temperature entropy. Recent experiments, which detect changes in the number of quasiparticles trapped in a local potential well as a function of an applied gate voltage, V(G), provide a possibility for measuring this entropy, if carried out over a suitable range of temperatures, T. We present a microscopic model for quasiparticles in a potential well and study the effects of non-Abelian statistics on the charge stability diagram in the V(G)-T plane, including broadening at finite temperature. We predict a measurable slope for the first quasiparticle charging line and an even-odd effect in the diagram, which is a signature of non-Abelian statistics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.106805DOI Listing

Publication Analysis

Top Keywords

non-abelian statistics
16
additional low
8
potential well
8
detecting non-abelian
4
non-abelian anyons
4
anyons charging
4
charging spectroscopy
4
spectroscopy observation
4
non-abelian
4
observation non-abelian
4

Similar Publications

On the edge of certain fractional quantum Hall states, e.g., at 2/3 and 5/2 filling, a local fractional excitation, occurring by anyon tunneling at a quantum point contact, is further fractionalized into counterpropagating charge and neutral (Abelian or non-Abelian) anyonic excitations.

View Article and Find Full Text PDF

Demonstrating the non-Abelian Ising anyon statistics of Majorana zero modes in a physical platform still represents a major open challenge in physics. We here show that the linear low-frequency charge conductance of a Majorana interferometer containing a floating superconducting island can reveal the topological spin of quantum edge vortices. The latter are associated with chiral Majorana fermion edge modes and represent "flying" Ising anyons.

View Article and Find Full Text PDF

The Majorana fermion offers fascinating possibilities such as non-Abelian statistics and nonlocal robust qubits, and hunting it is one of the most important topics in current condensed matter physics. Most of the efforts have been focused on the Majorana bound state at zero energy in terms of scanning tunneling spectroscopy searching for the quantized conductance. On the other hand, a chiral Majorana edge channel appears at the surface of a three-dimensional topological insulator when engineering an interface between proximity-induced superconductivity and ferromagnetism.

View Article and Find Full Text PDF

Tunable even- and odd-denominator fractional quantum Hall states in trilayer graphene.

Nat Commun

July 2024

National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.

Fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are anyons obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators - appearing at half filling of a Landau level (LL) - are predicted to possess non-Abelian excitations with appealing potential in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunctions and the LL mixing.

View Article and Find Full Text PDF

We perform classical-statistical real-time lattice simulations to compute real-time spectral functions and momentum broadening of quarks in the presence of strongly populated non-Abelian gauge fields. Based on a novel methodology to extract the momentum broadening for relativistic quarks, we find that the momentum distribution of quarks exhibit interesting nonperturbative features as a function of time due to correlated momentum kicks it receives from the medium, eventually going over to a diffusive regime. We extract the momentum diffusion coefficient for a mass range describing charm and bottom quarks and find sizable discrepancies from the heavy-quark limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!