Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology. The prepared fibers were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Using the fibers as catalysts, photocatalytic degradation of Methylene Blue (MB) aqueous solution was carried out under simulated sunlight. The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2, compared to other Ce-doped molar concentrations. The 0.2% Ce-doped SiO2/TiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SiO2. The reasons for improving the photocatalytic activity were also discussed. Several operational parameters were studied, which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration, the initial pH, inorganic anions, and so on. In addition, the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process. The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(11)61008-5DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
methylene blue
8
cerium-doped sio2/tio2
8
sio2/tio2 nanostructured
8
nanostructured fibers
8
fibers
6
photocatalytic
6
simulated-sunlight-activated photocatalysis
4
photocatalysis methylene
4
blue cerium-doped
4

Similar Publications

Insight into photocatalytic CO reduction on TiO-supported Cu nanorods: a DFT study on the reaction mechanism and selectivity.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.

View Article and Find Full Text PDF

This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

Recent advancements in nanoscience underscore the transformative potential of nanomaterials in environmental and biological applications. In this study, we synthesized gold nanoparticles (Au@ NPs) using an eco-friendly and cost-effective approach, leveraging peel extract as both a capping and reducing agent. This method presents a sustainable alternative to traditional chemical agents.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!