Unified detection and tracking of instruments during retinal microsurgery.

IEEE Trans Pattern Anal Mach Intell

EPFL IC ISIM CVLAB, BC 309 (Batiment BC), Station 14, Lausanne, Switzerland.

Published: May 2013

Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost. To bridge these two approaches, we propose a framework for unified detection and tracking as a time-series Bayesian estimation problem. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a target in each frame. To do this we integrate the Active Testing (AT) paradigm with Bayesian filtering, and this results in a framework capable of both detecting and tracking robustly in situations where the target object enters and leaves the field of view regularly. We demonstrate our approach on a retinal tool tracking problem and show through extensive experiments that our method provides an efficient and robust tracking solution.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2012.209DOI Listing

Publication Analysis

Top Keywords

detection tracking
16
tracking
11
unified detection
8
local optimization
8
target
5
tracking instruments
4
instruments retinal
4
retinal microsurgery
4
microsurgery methods
4
methods tracking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!