The development of an efficient and stable artificial photosensitizer for visible-light-driven hydrogen production is highly desirable. Herein, a new series of charge-neutral, heteroleptic tricyclometalated iridium(III) complexes, [Ir(thpy)2(bt)] (1-4; thpy = 2,2'-thienylpyridine, bt = 2-phenylbenzothiazole and its derivatives), were systematically synthesized and their structural, photophysical, and electrochemical properties were established. Three solid-state structures were studied by X-ray crystallographic analysis. This design offers the unique opportunity to drive the metal-to-ligand charge-transfer (MLCT) band to longer wavelengths for these iridium complexes. We describe new molecular platforms that are based on these neutral iridium complexes for the production of hydrogen through visible-light-induced photocatalysis over an extended period of time in the presence of [Co(bpy)3](2+) and triethanolamine (TEOA). The maximum amount of hydrogen was obtained under constant irradiation over 72 h and the system could regenerate its activity upon the addition of cobalt-based catalysts when hydrogen evolution ceased. Our results demonstrated that the dissociation of the [Co(bpy)3](2+) catalyst contributed to the loss of catalytic activity and limited the long-term catalytic performance of the systems. The properties of the neutral complexes are compared in detail to those of two known non-neutral bpy-type complexes, [Ir(thpy)2(dtb-bpy)](+) (5) and [Ir(ppy)2(dtb-bpy)](+) (6; ppy = 2-phenylpyridine, dtb-bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl). This work is expected to contribute toward the development of long-lasting solar hydrogen-production systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201300146 | DOI Listing |
J Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFJ Cheminform
January 2025
PROMOCS Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.
Effective light-based cancer treatments, such as photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), rely on compounds that are activated by light efficiently, and absorb within the therapeutic window (600-850 nm). Traditional prediction methods for these light absorption properties, including Time-Dependent Density Functional Theory (TDDFT), are often computationally intensive and time-consuming. In this study, we explore a machine learning (ML) approach to predict the light absorption in the region of the therapeutic window of platinum, iridium, ruthenium, and rhodium complexes, aiming at streamlining the screening of potential photoactivatable prodrugs.
View Article and Find Full Text PDFChempluschem
January 2025
Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1 Katahira, Aoba-ku, 9808577, Sendai, JAPAN.
Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States.
We report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The diiridium complexes of lithium-ion endohedral fullerene Li@C were synthesised in high yields. X-ray crystallography revealed the η:η-coordination of Li@C and the disorder of the Li ion over two sites close to the coordinated carbons. C NMR study suggested the presence of dynamic behaviour haptotropic rearrangements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!