Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25-35 in C6 glioma cells.

Neurochem Res

School of Public Health and Family Medicine, Capital Medical University, No.10 Xitoutiao, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China.

Published: July 2013

Reactive oxygen species (ROS) are mainly produced by mitochondria which can cause oxidative stress. It has been considered that mitochondrial damage induced by oxidative stress is related to Alzheimer's disease (AD). Besides, mitochondrial DNA (mtDNA) is more vulnerable to oxidative damage than other biomacromolecules, causing serious dysfunction to mitochondria. β-amyloid peptides (Aβ) is a main factor responsible for the occurrence and development of AD. Astrocytes is an important target cell for Aβ' toxicity and can be activated to neglect their normal fountain in the central nervous system. Genistein (Gen), a main active ingredient of soybean isoflavone, has been shown to have neuroprotective effects by antagonizing oxidative damage induced by Aβ. Thus, in the present study, we evaluated Aβ25-35 induced mitochondrial DNA (mtDNA) damage and the protective effect of Gen in C6 glioma cells (C6 cells). The study design was consisted of four groups: control group (vehicle), Aβ group treated with Aβ25-35, Gen + Aβ group treated with Gen + Aβ25-35 and Gen group treated with Gen only. C6 cells were pre-incubated with or without Gen (50 μM) for 2 h followed by the incubation with Aβ25-35 (25 μM) for another 24 h. Then the cells were harvested and processed to perform the analysis according to protocols. The mitochondrial ROS in C6 cells were measured by fluorescence spectrometer. Enzyme-linked immunosorbent assay (ELISA) was used to detect the mitochondrial reduced glutathione (GSH) and oxidized glutathione (GSSG) in C6 cells, then the ratio of GSH and GSSG was calculated. The levels of 8-hydroxydeoxyguanosine (8-OHdG) in C6 cells was also detected by ELISA. In addition, mtDNA deletion was detected by polymerase chain reaction (PCR). The mRNA and protein expression of 8-oxoguanine DNA glycosylase (OGG1) in both C6 cells and its mitochondria, and manganese superoxide dismutase (MnSOD) in mitochondria were detected by using reverse transcription-PCR and Western blot. The results showed that the increased mitochondrial ROS accumulation in C6 cells induced by Aβ was profoundly reversed by pre-treaded with Gen (p < 0.05). The ratio of GSH and GSSG in mitochondria was significantly increased in both Gen + Aβ group and Gen group compared with Aβ group (p < 0.05). The levels of 8-OHdG in C6 cells and mtDNA deletion were decreased after pre-treated with Gen (p < 0.05). Gen could also up-regulate the mRNA and protein expression of OGG1 in both C6 cells and its mitochondria and mitochondrial MnSOD compared with the Aβ group (p < 0.05). These results confirmed that Gen could alleviate the mitochondria-targeted oxidative damage induced by β-amyloid 25-35 in C6 cells which might be useful for the treatment of neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-013-1019-yDOI Listing

Publication Analysis

Top Keywords

aβ group
20
damage induced
16
cells
13
gen
13
oxidative damage
12
group treated
12
induced β-amyloid
8
β-amyloid peptides
8
glioma cells
8
oxidative stress
8

Similar Publications

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

A new family of cyclic opioid peptide analogues related to the 1-4 sequence of dermorphin/deltorphin (Tyr-D-Aaa2-Phe-Aaa4-NH2) has been synthesized. The synthesis of the linear precursor peptides was accomplished by the solid-phase method and ring formation was achieved via a ureido group incorporating the side chain amino functions of D-Aaa2 (D-Lys, D-Orn) and Aaa4 (Lys, Orn, Dab, Dap). The peptides were tested in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!