In spite of previous reports, the role of transforming growth factor-β1 (TGF-β1) on cardiomyocyte differentiation, especially in the present autologous serum (AS) in culture medium, is still unclear. So, the purpose of this study was to investigate the potential of rat bone marrow mesenchymal stem cells (rBMSCs) to proliferate and differentiate towards cardiomyocyte lineage with the use of AS. Most expansion protocols use a medium supplemented with fetal bovine serum (FBS) as nutritional supplement. FBS is an adverse additive to cells that are proliferated for therapeutic purposes in humans because the use of FBS carries the risk of transmitting viral and bacterial infections and proteins that may initiate xenogeneic immune responses. Therefore, bone marrow cells were cultured in a medium supplemented with 10% AS, 10% FBS, and serum free medium (SFM). Then, rBMSCs were cultured with TGF-β1 (10 ng/ml) for 2 wk. The number of viable cells in AS and FBS groups were measured with MTT assay. Beating areas frequency, up to fourth week after plating, were monitored and evaluated daily. The characteristics of cardiomyocytes were assessed by semi-quantitative reverse transcription polymerase chain reaction and western blot. MTT result indicated that rBMSCs in AS proliferated markedly faster than FBS and SFM. The number of beating areas significantly increased in AS compared to FBS medium. A noticeable increase in the cardiac genes expression was observed in AS. Moreover, western blot analysis confirmed that cardiac proteins were increased in the AS condition. In conclusion, the present study could be extended toward the safe culture of MSCs for the treatment of heart defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-013-9597-1 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFBlood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFSci Immunol
January 2025
Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!