Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present radio frequency transverse susceptibility (TS) measurements on oleic acid-coated and SiO2-coated Fe3-xO4 magnetite nanoparticles. The effects of the type of coating on the interparticle interactions and magnetic anisotropy are evaluated for two different particle sizes in powder samples. On the one hand, SiO2 coating reduces the interparticle interactions as compared to oleic acid coating, the reduction being more effective for 5 nm than for 14 nm diameter particles. On the other hand, the magnetic anisotropy field at low temperature is lower than 1 kOe in all cases and independent of the coating used. Our results are relevant concerning applications in biomedicine, since the SiO2 coating renders 5 and 14 nm hydrophilic particles with very limited agglomeration, low anisotropy, and superparamagnetic behavior at room temperature. The TS technique also allows us to discriminate the influence on the anisotropy field of interparticle interactions from that of the thermal fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/15/155705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!