A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lō´ihi, Hawai´l. | LitMetric

Zetaproteobacteria are among the most prevalent Fe(II)-oxidizing bacteria (FeOB) at deep-sea hydrothermal vents; however, knowledge about their environmental significance is limited. We provide metagenomic insights into an iron mat at the Lō´ihi Seamount, Hawai´l, revealing novel genomic information of locally dominant Zetaproteobacteria lineages. These lineages were previously estimated to account for ~13% of all local Zetaproteobacteria based on 16S clone library data. Biogeochemically relevant genes include nitrite reductases, which were previously not identified in Zetaproteobacteria, sulfide:quinone oxidases, and ribulose-1,5-bisphosphate carboxylase (RuBisCo). Genes assumed to be involved in Fe(II) oxidation correlate in synteny and share 87% amino acid similarity with those previously identified in the related Zetaproteobacterium Mariprofundus ferrooxydans PV-1. Overall, Zetaproteobacteria genes appear to originate primarily from within the Proteobacteria and the Fe(II)-oxidizing Leptospirillum spp. and are predicted to facilitate adaptation to a deep-sea hydrothermal vent environment in addition to microaerophilic Fe(II) and H2S oxidation. This dataset represents the first metagenomic study of FeOB from an iron oxide mat at a deep-sea hydrothermal habitat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603346PMC
http://dx.doi.org/10.3389/fmicb.2013.00052DOI Listing

Publication Analysis

Top Keywords

deep-sea hydrothermal
12
metagenomic insights
8
iron mat
8
mat lō´ihi
8
zetaproteobacteria
6
insights dominant
4
dominant feii
4
feii oxidizing
4
oxidizing zetaproteobacteria
4
zetaproteobacteria iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!