New two-dimensional Mn(II) metal-organic framework featured spin canting.

Dalton Trans

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China.

Published: May 2013

A two-dimensional (2D) complex {[Mn(1.5)(L)(bpe)(1.5)]·(bpe)(0.5)}n (1) (H3L = 3-(2-carboxy-phenoxy)phthalic acid, bpe = 1,2-bis(4-pyridyl)ethene), consisting of manganese(II) chains and bridging bpe ligands, has been synthesized and characterized. The magnetic behavior of 1 can be simulated as a -J1J1J2- alternating chain. Magnetic studies show that this complex magnetic behavior belongs to spin canting and exhibits an unusually high T(c) around 40 K. A theoretical study based on DFT-BS calculations provides some insight into the underlying mechanism of the novel magnetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt32556cDOI Listing

Publication Analysis

Top Keywords

spin canting
8
magnetic behavior
8
two-dimensional mnii
4
mnii metal-organic
4
metal-organic framework
4
framework featured
4
featured spin
4
canting two-dimensional
4
two-dimensional complex
4
complex {[mn15lbpe15]·bpe05}n
4

Similar Publications

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Spin Canting Promoted Manipulation of Exchange Bias in a Perpendicular Coupled FeGaTe/CrSBr Magnetic van der Waals Heterostructure.

ACS Nano

January 2025

Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.

View Article and Find Full Text PDF

Discovery of a layered multiferroic compound CuMnSiTe with strong magnetoelectric coupling.

Sci Adv

January 2025

2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

Article Synopsis
  • Multiferroic materials combine ferroelectricity and magnetism, making them promising for applications like magnetic memory and spin transistors.
  • A new multiferroic chalcogenide semiconductor, CuMnSiTe, demonstrates unique properties such as a polar monoclinic crystal structure and canted antiferromagnetism below 35 K, along with significant magnetoelectric coupling.
  • Observations include high electric polarization at low temperatures and the potential for room-temperature ferroelectricity, marking it as a significant advancement in multiferroic materials research.
View Article and Find Full Text PDF

Intriguing magnetic and electronic behaviors in La and Ru doped Sr2IrO4.

J Phys Condens Matter

December 2024

Departmet of Physics(MMV), Banaras Hindu University, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.

We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (Sr1-x Lax)2Ir1-xRuxO4 (x= 0.05, 0.15).

View Article and Find Full Text PDF

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CHNH]Co(HCOO).

Small

December 2024

Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!