A soil metagenomic library was constructed and two functionally diverse lipase genes, SMlipB and SMlipD, were screened by a function-driven approach and characterized. The optimal temperature for enzyme activity of SMlipB and SMlipD was 50°C and 30°C, respectively, and optimal pH was determined to be 7.0 and 9.0, respectively. Both enzymes exhibited broad substrate specificity and showed enhanced activity in the presence of SDS and Tween 20. The SMlipB enzyme was highly resistant to many organic solvents, especially isopropanol, ethanediol, DMSO, methanol and xylene, whereas SMlipD activity was inhibited in all the solvents except xylene. Sequence analysis revealed SMlipB consisted of an open reading frame of 1,212 bp and encoded for 404 amino acids. It contained the GXXGXD motifs, which are supposed to be involved in Ca(2+) binding in proteases and lipases, and an extreme C-terminal motif consisting of a negatively charged amino acid followed by four hydrophobic residues, essential for the secretion of metalloprotease, and belongs to lipase subfamily I.3. SMlipD contained 1,071 bp ORF and encoded for 357 amino acids. It contains Ca(2+) ion binding sites extending from amino acid 282 to 294 and two Cystein residues (218,308), proven necessary for forming a disulfide bridge and belongs to lipase subfamily1.2.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.59.021DOI Listing

Publication Analysis

Top Keywords

functionally diverse
8
smlipb smlipd
8
amino acids
8
amino acid
8
belongs lipase
8
cloning characterization
4
characterization functionally
4
diverse lipases
4
lipases soil
4
soil metagenome
4

Similar Publications

In recent years, the deep learning (DL) technique has rapidly developed and shown great success in scoring the protein-ligand binding affinities. The protein-ligand conformation optimization based on DL-derived scoring functions holds broad application prospects, for instance, drug design and enzyme engineering. In this study, we evaluated the robustness of a DL-based ligand conformation optimization protocol (DeepRMSD+Vina) for optimizing structures with input perturbations by examining the predicted ligand binding poses and scoring.

View Article and Find Full Text PDF

A systematic Review of Spirituality Tools Based on Psychometric Qualities and Recommendations for Future Research.

J Relig Health

December 2024

Department of Yoga and Spirituality, SVYASA University, Prashanti Kutiram, Vivekanand Road, Kallubalu Post Jigani, Anekal Taluk, Bangalore, 560105, India.

Spiritual lifestyles positively impact physical and mental health, which can be addressed by effective spiritual tools. This review systematically evaluates general spirituality instruments retrieved from various databases. Among the top four validated tools with strong psychometric properties, each exhibited a limitation-such as contamination, absence of subscales, or lack of confirmatory factor analysis-which impacts their broader applicability.

View Article and Find Full Text PDF

Background: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis with diverse clinical manifestations, often associated with mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. BRAF and KRAS mutations, which are driver mutations of oncogenes, participate in the same signaling pathway (MAPK/ERK pathway) and are usually mutually exclusive. We report a case of ECD with concurrent BRAF and KRAS mutations treated using BRAF and MEK inhibitors.

View Article and Find Full Text PDF

Immunotherapy, which uses the body's immune system to fight cancer cells, has gained attention recently as a breakthrough in cancer treatment. Although significant progress has been made, obstacles still exist since cancers are skilled at avoiding immune monitoring. The gut microbiota is being looked at more and more in modern research as a critical component in improving the results of immunotherapy.

View Article and Find Full Text PDF

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!