Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2013.03.012 | DOI Listing |
Biomaterials
December 2024
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China. Electronic address:
In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy.
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
Addressing irregular bone defects is a formidable clinical challenge, as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration, resulting in suboptimal healing. This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure (macro-, meso-, and nano-scales) and tempered degradation (microscale), intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs. For the hierarchical structure, at the macroscale, it can feature anatomic geometries for seamless integration with the bone defect; The mesoscale pores are devised with optimized curvature and size, providing an adequate mechanical response as well as promoting cellular proliferation and vascularization, essential for natural bone mimicry; The nanoscale textured surface is enriched with a layered double hydroxide membrane, augmenting bioactivity and osteointegration.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States.
Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Orthopedics, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China.
Background: Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!