Considerable research has been focused on in vitro production (IVP) of goat embryos to improve its efficiency. In Experiment 1, the effect of the cumulus cells by comparing slaughterhouse-oocytes denuded on purpose (DOP) prior to IVF to intact COC, and the effect of heparin during IVF were assessed. In Experiment 2, oocytes that were already denuded at collection (DOC), DOP and intact COC were studied. Three treatments used oocytes denuded at collection: DOC oocytes were cultured alone for both IVM and IVF; DOC and COC were cultured together for both IVM and IVF or DOC were IVM alone and then mixed with COC for IVF. In other treatments, COC were allocated to four IVF treatments: Intact COC; COC were denuded prior to IVF; COC were denuded and IVF with added cumulus cells; COC were denuded and IVF mixed with intact COC giving two sub-treatments: Denuded oocytes that were IVF with COC; and COC that were IVF with denuded oocytes. After fertilization, all presumptive zygotes were cultured for 8 days. In Experiment 1, the yield of blastocysts as a proportion of total oocytes was greater (P<0.05) for COC that were IVF in the presence of heparin (54%) than without heparin (42%) or oocytes already denuded at collection that were IVF with or without heparin (41%; 38%; respectively). In Experiment 2, the developmental potential of oocytes denuded at collection was reduced (cleavage and blastocyst rates calculated from total oocytes: 34%; 11%, respectively) as compared to COC (77%; 59%, P<0.05). However, when equal numbers of both were mixed at the start of IVM, the rates were not significantly different to COC alone (68%; 45%), but when both were mixed equally only for IVF, the rates were reduced (57%; 40%, P<0.05). Denuded oocytes co-cultured with cumulus cells were not significantly different to intact COC (76%; 55%). The effect of adding COC during IVF to oocytes denuded after IVM was similar to adding cumulus cells to the same type of oocytes. In conclusion, both the use of heparin and the association of oocytes with cumulus cells, either detached or in intimate contact, during IVM and/or IVF significantly improve IVP of goat embryos. Furthermore, some oocytes that are already denuded at collection will develop satisfactorily to blastocysts when matured and fertilized with intact COC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2013.02.012DOI Listing

Publication Analysis

Top Keywords

intact coc
16
cumulus cells
12
coc
12
coc denuded
12
ivf
11
vitro production
8
goat embryos
8
denuded
8
prior ivf
8
oocytes denuded
8

Similar Publications

For the first time, this study integrate the light-driven depolymerization/activation of industrial grade sodium lignosulfonate and its subsequent photo-induced radical polymerization with acrylamide (AM) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) into one-pot using MIL-100(Fe)-NH(20) as a photocatalyst to synthesize fluid loss agent LSMP. Due to the significant hydrogen bonding effect, the agent owns excellent rheological and filtration properties. The filtrate volumes of drilling fluids containing 2.

View Article and Find Full Text PDF

Background: maturation (IVM) of germinal vesicle intact oocytes prior to fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment.

View Article and Find Full Text PDF

Background: Vascular calcification, a component of chronic kidney disease-mineral and bone disorder (CKD-MBD), is prevalent in patients with end-stage kidney disease (ESKD) and contributes to high mortality. However, the association between the blood level of total osteocalcin (OC) and vascular calcification and mortality remains inconclusive. We, therefore, investigated whether different OC fractions can serve as biomarkers of vascular calcification and mortality in the ESKD population.

View Article and Find Full Text PDF

Reduction mechanisms of V by vanadium-reducing bacteria in aqueous environments: Role of different molecular weight fractionated extracellular polymeric substances.

Sci Total Environ

December 2022

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown.

View Article and Find Full Text PDF

Catalysis by radical enzymes dependent on coenzyme B (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 10-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!