[Advanced therapy: from European regulatory framework to national regulatory framework].

Transfus Clin Biol

Agence nationale de sécurité du médicament, 143-147, boulevard Anatole-France, 93285 Saint-Denis, France.

Published: May 2013

The European regulation n(o) 1394/2007/CE published on the 13th of November 2007 defined and harmonized the European regulatory framework for advanced therapy medicinal products. It creates a specialized committee located at the European Medicine Agency, in charge of the assessment of these medicinal products. The consequences of this regulation are introduced in the French regulation by the law n(o) 2011-302 published on the 22nd of March 2011. It detailed notably the possibility for public establishments (except health establishments) and nonprofit organisms to create pharmaceutical establishments. This law defined also a specific category of advanced therapy medicinal products, which fall under the "hospital exemption" framework. The rules regarding the authorizations of the establishments able to prepare these types of medicinal products and the authorization of the products are defined by the n(o) 2012-1236 decree published on the 6th of November 2012.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tracli.2013.02.006DOI Listing

Publication Analysis

Top Keywords

medicinal products
16
european regulatory
8
regulatory framework
8
advanced therapy
8
therapy medicinal
8
products
5
[advanced therapy
4
european
4
therapy european
4
framework national
4

Similar Publications

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Parasitic diseases such as trypanosomiasis and leishmaniasis pose significant health challenges in Africa. The Senegalese Pharmacopoeia, known for its many medicinal plants with anti-infectious properties, can be a source of antiparasitic natural products. This study aimed to evaluate the in vitro antiparasitic activities of 33 methanolic extracts from 24 ethnopharmacologically selected plants against Trypanosoma brucei brucei and Leishmania mexicana mexicana, as well as their cytotoxic activities on WI-38 cells.

View Article and Find Full Text PDF

Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!