Diffusion-controlled formation of Ti2O3 during spark-plasma synthesis.

Inorg Chem

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straβe 40, 01187 Dresden, Germany.

Published: April 2013

The spark-plasma-sintering (SPS) technique has successfully been applied for the single-step direct synthesis of Ti2O3 from a mixture of powders of rutile/anatase with titanium. The components react by diffusion through the grain boundaries, forming several intermediate phases locally. A single-phase material of titanium(III) oxide is obtained in compact bulk form after 180 min of SPS treatment at 1473 K. The electrical and thermal transport properties of such a SPS-prepared material measured in the temperature range between 300 and 800 K reflect the known semiconductor-to-metal transition above 400 K. The observed metallic-like electrical and thermal conductivity above this temperature is in good agreement with previously reported results. A maximum of the thermoelectric figure-of-merit ZT = 0.04 is achieved at 350 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic3027094DOI Listing

Publication Analysis

Top Keywords

electrical thermal
8
diffusion-controlled formation
4
formation ti2o3
4
ti2o3 spark-plasma
4
spark-plasma synthesis
4
synthesis spark-plasma-sintering
4
spark-plasma-sintering sps
4
sps technique
4
technique applied
4
applied single-step
4

Similar Publications

Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).

View Article and Find Full Text PDF

Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators.

Light Sci Appl

January 2025

Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.

Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.

View Article and Find Full Text PDF

Introduction: Transurethral resection of the prostate (TURP) is the gold standard surgical treatment to lower urinary tract symptoms and benign prostatic obstruction (LUTS/BPO). Although it has been proven to have substantial efficacy in improving functional outcomes, it has shown a high incidence of complications, including transurethral resection syndrome, massive bleeding, urinary incontinence and sexual dysfunction. High-frequency irreversible electroporation (H-FIRE) is a novel non-thermal ablation technique that delivers pulsed high-voltage but low-energy electric current to the cell membrane, thereby leading to cell death.

View Article and Find Full Text PDF

Ultrahigh Energy Storage Performance in BiFeO-Based Lead-Free Ceramics via Tuning Structural Homogeneity and Domain Engineering Strategies.

ACS Appl Mater Interfaces

January 2025

Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.

Lead-free ceramic-based dielectric capacitors are critical in electronics and environmental safety. Nevertheless, developing ideal lead-free ceramics with excellent energy storage properties remains a challenging task for practical applications. Herein, the enhanced relaxation behavior and increased breakdown electric field are utilized to realize the high energy storage behavior of (0.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!