Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFNeurol Clin Pract
April 2025
Department of Neurology, Emory University School of Medicine, Atlanta, GA.
Background And Objectives: Telemedicine has become a mainstay of ALS clinical care, but there is currently no standardized approach for assessing and tracking changes to the neurologic examination in this format. The goal of this study was to create a standardized telemedicine-based motor examination scale to objectively and reliably track ALS progression and use Rasch methodology to validate the scale and improve its psychometric properties.
Methods: A draft telemedicine examination scale with 25 items assessing movement in the bulbar muscles, neck, trunk, and extremities was created by an ALS expert panel, incorporating input from patient advisors.
We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency ( ) and the repetition rate of the comb in place ( ), eliminating the need for an external RF oscillator.
View Article and Find Full Text PDFCoherent heterodyne lidars are typically used for windspeed and attenuated backscattering measurements. The lack of molecular backscattering detection capability has limited the calibrated backscattering measurements until recent advances in coherent lidar technology. In this work, the simultaneous detection of aerosol and molecular backscattering is demonstrated with coherent heterodyne lidar, and the results are compared with a state-of-the-art Raman lidar PollyXT as a reference in a long-range for the first time.
View Article and Find Full Text PDFWe report a hybrid Brillouin optical frequency/correlation-domain analysis technique, capable of accurate and high spatial resolution Brillouin frequency shift (BFS) profile measurements in optical fibers. The method relies on a conventional Brillouin optical frequency domain analysis (BOFDA) configuration, with an additional sinusoidal frequency modulation (FM) applied to the pump and probe beams. Such frequency modulation synthetizes a sequence of narrow correlation peaks along the fiber, which are simultaneously interrogated through BOFDA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!