Background: Concanavalin A (ConA)-induced hepatitis is an experimental murine model mirroring the pathology of human autoimmune hepatitis.
Aim: To investigate the effects of intrasplenically transplanted fetal hepatocytes (BNL.CL2) transfected with recombinant adenovirus vector expressing the IL-18 binding protein (IL-18BP) and IL-4 fusion protein on ConA-induced hepatitis in mice.
Methods: Ad-IL-18BP/IL-4 was used to infect BNL.CL2 cells. IL-4 and IL-18BP fusion protein expression were detected by ELISA and Western blotting. BNL.CL2 cells infected with Ad-IL-18BP/IL-4 were intrasplenically transplanted into mice. After 10 days, mice were injected with ConA (15 mg/kg), and sacrificed 18 hours later. Liver injury was assessed by serum transaminase and liver histology. TNF-α, IL-18, IL-4, IL-10, IL-12p70 and monocyte-chemoattracting protein (MCP)-1 levels in serum and liver homogenates were detected by ELISA. Signaling molecules in liver homogenates were analyzed by Western blotting.
Results: Ad-IL-18BP/IL-4 effectively expressed the IL-18BP/IL-4 fusion protein for more than 14 days in BNL.CL12 cells. Treatment of mice with Ad-IL-18BP/IL-4-BNL.CL2 before ConA injection significantly reduced the elevated plasma levels of transaminases compared with ConA control groups. TNF-α, IL-18, IL-12p70 and MCP-1 levels in serum and liver homogenates from mice transplanted with Ad-IL-18BP/IL-4-BNL.CL2 were lower and IL-4 and IL-10 levels were higher than control groups. Phosphorylation levels of NF-κB p65, AKT, p38 and JNK1/2 in liver homogenates were markedly suppressed by Ad-IL-18BP/IL-4.
Conclusions: Ad-IL-18BP/IL-4 was effectively transfected into mouse BNL.CL2 cells. Intrasplenic transplantation of Ad-IL-18BP/IL-4-BNL.CL12 cells alleviated the severity of inflammation in ConA-induced experimental hepatitis and provides a useful basis for the targeted gene therapy of liver disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596329 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058836 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!