The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7-dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597506 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1003353 | DOI Listing |
Int Immunopharmacol
December 2024
Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China. Electronic address:
Background: The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood.
Objective: This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs.
The acoel worm has recently emerged as a model organism for studying whole-body regeneration and embryonic development. Previous studies suggest that post-transcriptional mechanisms likely play important roles in whole-body regeneration. Here, we establish a resource for studying microRNA-mediated gene regulation, a major aspect of post-transcriptional control in animals.
View Article and Find Full Text PDFMutat Res
December 2024
Selcuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey. Electronic address:
Background: Head and neck squamous cell carcinomas are the seventh most common cancer accounting for 90 % of malignant neoplasia of the upper respiratory system. KRAS is a very important oncogene, leading to the suppression of apoptosis, and promoting the pathogenesis and development of tumors. MicroRNAs (miRNAs) are highly conserved, small noncoding RNA molecules aberrantly expressed in various pathologies including regulation of tumor and metastasis-associated genes.
View Article and Find Full Text PDFPathol Res Pract
November 2024
Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India. Electronic address:
Atherosclerosis
November 2024
Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Fimlab Laboratories, Finland. Electronic address:
MicroRNAs (miRNAs) are short non-coding RNAs, that regulate gene-expression at post-transcriptional level. Unlike other RNA species, blood miRNAs circulate in a highly stable form, either within extracellular vesicles or bound to proteins. In recent years, circulatory miRNA profiles have been proposed as potential biomarkers for multitude of pathologies, including essential hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!