Effect of velocity on shoulder muscle recruitment patterns during wheelchair propulsion in nondisabled individuals: pilot study.

J Rehabil Res Dev

ASPIRE Centre for Disability Sciences, Institute of Orthopedics and Musculoskeletal Science, University College London, Brockley Hill, Stanmore, London, UK.

Published: September 2013

AI Article Synopsis

  • This study explored how the speed of wheelchair propulsion affects the muscle activation patterns of shoulder muscles using electromyography (EMG) and kinetic data from 15 nondisabled subjects.
  • Significant differences in muscle activation were found between slower and faster speeds, with increased EMG intensity at higher speeds.
  • Faster propulsion required not only enhanced activity from the muscles used for pushing but also earlier and more intense activation from recovery muscles.

Article Abstract

This study investigated how the recruitment patterns of shoulder muscles were influenced by wheelchair propulsion speed. Electromyography (EMG) activity of seven muscles was recorded with surface electrodes on 15 nondisabled subjects during wheelchair propulsion on a stationary ergometer. Kinetic data were measured by a SmartWheel. EMG total intensities were calculated to describe the muscle activation level, while the angles formed by first principal component and second principal component loading scores were calculated to describe the spectral content of EMG signals. Significant differences were observed in kinetic variables between the two testing speeds (p < 0.05). The EMG intensity of the tested muscles increased significantly with increased speed (p < 0.05). The push muscles showed a longer EMG duration, whereas the recovery muscles exhibited significantly earlier EMG onset and peak activities at the fast speed. The smaller angle values in the fast propulsion speed indicated that faster motor units were recruited to match the mechanical requirement for the faster motion. Pushing a manual wheelchair at a faster speed not only requires a higher level of propulsive muscle activity but also a higher level of recovery muscle activation.

Download full-text PDF

Source
http://dx.doi.org/10.1682/jrrd.2011.03.0047DOI Listing

Publication Analysis

Top Keywords

wheelchair propulsion
12
recruitment patterns
8
propulsion speed
8
calculated describe
8
muscle activation
8
principal component
8
higher level
8
emg
6
muscles
5
speed
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!