Multifocal motor neuropathy (MMN) is a purely motor mononeuritis multiplex characterized by the presence of conduction block on motor but not on sensory nerves and by the presence of high titers of anti-GM1 antibodies. Several data point to a pathogenetic role of the immune system in this neuropathy, although this has not yet been proved. Several uncontrolled studies and randomized controlled trials have demonstrated the efficacy of therapy with high-dose intravenous immunoglobulin (IVIg) in MMN. However, this therapy has a short-lasting effect that needs to be maintained with periodic infusions. This can be partly overcome by the use of subcutaneous immunoglobulin (SCIg) at the same dose. The high cost and need for repeated infusions have led to the search for other immune therapies, the efficacy of which have not yet been confirmed in randomized trials. In addition, some therapies, including corticosteroids and plasma exchange, are not only ineffective but have been associated with clinical worsening. More recently, a number of novel therapies have been investigated in MMN, including interferon-β1a, the anti-CD20 monoclonal antibody rituximab and the complement inhibitor eculizumab. Preliminary data from open-label uncontrolled studies show that some patients improve after these therapies; however, randomized controlled trials are needed to confirm efficacy. Until then, IVIg (and SCIg) remains the mainstay of treatment in MMN, and the use of other immune therapies should only be considered for patients not responding to, or becoming resistant to, IVIg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40265-013-0029-z | DOI Listing |
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy derived from pooled donor immunoglobulins and used for treatment of various autoimmune conditions. Here we report the diagnosis and management of IVIG-induced chronic severe neutropenia with absolute neutrophil count <0.5×10/µL in a patient with multifocal motor neuropathy.
View Article and Find Full Text PDFBiomedicines
January 2025
Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan.
: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine and Neuroscience, University of Copenhagen, Denmark; Department of Neurology, Rigshospitalet, Copenhagen, Denmark.
Objective: To investigate motor axonal excitability in multifocal motor neuropathy (MMN) associated with involuntary muscle activity.
Methods: Two MMN patients with continuous involuntary finger movements (MMNifm) were compared to 11 patients without movements (MMNnfm). Clinical examination, EMG of the abductor pollicis brevis muscle, nerve conduction studies, motor unit number estimation, excitability studies, and mathematical modeling were conducted in the patients with MMN and compared to controls.
NeuroSci
December 2024
Department of Pediatrics, Dokkyo Medical University, Tochigi 321-0293, Japan.
Background: Acute disseminated encephalomyelitis (ADEM) is a rare, immune-mediated inflammatory disorder of the central nervous system (CNS), typically characterized by the acute onset of multifocal demyelination. The pathogenesis of ADEM remains unclear, but it is believed to be triggered by an autoimmune response, often following viral infections or vaccinations.
Case Report: This case report describes a 3-year-old child who developed ADEM after receiving two concurrent influenza vaccines: one for seasonal influenza and one for the 2009 H1N1 pandemic.
Neuroscience
January 2025
School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA.
Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!