Ochratoxin A (OTA), one of the most abundant mycotoxin food contaminants, is classified as "possibly carcinogenic to humans." Our previous study showed that OTA could induce a G2 arrest in immortalized human gastric epithelium cells (GES-1). To explore the putative roles of oxidative DNA damage and the ataxia telangiectasia-mutated (ATM) pathways on the OTA-induced G2 arrest, the current study systematically evaluated the roles of reactive oxygen species (ROS) production, DNA damage, and ATM-dependent pathway activation on the OTA-induced G2 phase arrest in GES-1 cells. The results showed that OTA exposure elevated intracellular ROS production, which directly induced DNA damage and increased the levels of 8-OHdG and DNA double-strand breaks (DSBs). In addition, it was found that OTA treatment induced the phosphorylation of the ATM protein, as well as its downstream molecules Chk2 and p53, in response to DNA DSBs. Inhibition of ATM by the pharmacological inhibitor caffeine or siRNA effectively prevented the activation of ATM-dependent pathways and rescued the G2 arrest elicited by OTA. Finally, pretreatment with the antioxidant N-acetyl-L-cysteine (NAC) reduced the OTA-induced DNA DSBs, ATM phosphorylation, and G2 arrest. In conclusion, the results of this study suggested that OTA-induced oxidative DNA damage triggered the ATM-dependent pathways, which ultimately elicited a G2 arrest in GES-1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-013-1043-3DOI Listing

Publication Analysis

Top Keywords

dna damage
20
oxidative dna
12
ges-1 cells
12
ataxia telangiectasia-mutated
8
telangiectasia-mutated atm
8
atm pathways
8
human gastric
8
gastric epithelium
8
ros production
8
arrest ges-1
8

Similar Publications

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Ribosome profiling reveals dynamic translational landscape in HEK293T cells following X-ray irradiation.

Genomics

January 2025

Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.

View Article and Find Full Text PDF

Role of COL5A1 in lung squamous cell Carcinoma: Prognostic Implications and therapeutic potential.

Int Immunopharmacol

January 2025

Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China. Electronic address:

Background: Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications.

Methods: Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature.

View Article and Find Full Text PDF

The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.

View Article and Find Full Text PDF

In vitro and in vivo assessment of nanoceria biocompatibility for their safe use in nervous system applications.

J Hazard Mater

December 2024

Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña 15006, Spain. Electronic address:

Nanoceria, or cerium dioxide nanoparticles (CeO NP), are increasingly employed in a number of industrial and commercial applications. Hence, the environmental presence of these nanoparticles is growing progressively, enhancing the global concern on their potential health effects. Recent studies suggest that nanoceria may also have promising biomedical applications particularly in neurodegenerative and brain-related pathologies, but studies addressing their toxicity, and specifically on the nervous system, are still scarce, and their potential adverse effects and action mechanism are not totally understood yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!