Factor XI (fXI) is a homodimeric zymogen that is converted to a protease with 1 (1/2-fXIa) or 2 (fXIa) active subunits by factor XIIa (fXIIa) or thrombin. It has been proposed that the dimeric structure is required for normal fXI activation. Consistent with this premise, fXI monomers do not reconstitute fXI-deficient mice in a fXIIa-dependent thrombosis model. FXI activation by fXIIa or thrombin is a slow reaction that can be accelerated by polyanions. Phosphate polymers released from platelets (poly-P) can enhance fXI activation by thrombin and promote fXI autoactivation. Poly-P increased initial rates of fXI activation 30- and 3000-fold for fXIIa and thrombin, respectively. FXI monomers were activated more slowly than dimers by fXIIa in the presence of poly-P. However, this defect was not observed when thrombin was the activating protease, nor during fXI autoactivation. The data suggest that fXIIa and thrombin activate fXI by different mechanisms. FXIIa may activate fXI through a trans-activation mechanism in which the protease binds to 1 subunit of the dimer, while activating the other subunit. For activation by thrombin, or during autoactivation, the data support a cis-activation mechanism in which the activating protease binds to and activates the same fXI subunit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650707 | PMC |
http://dx.doi.org/10.1182/blood-2012-12-473629 | DOI Listing |
J Thromb Thrombolysis
December 2024
Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
Blood Res
October 2024
Daisy Hill Hospital, 5 Hospital Road, Newry, BT35 8DR, UK.
The classic coagulation cascade model of intrinsic and extrinsic coagulation pathways, i.e. contact activation pathway and tissue factor pathway, has been widely modified.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Achieving timely and effective hemorrhage control is imperative for the survival of individuals with severe bleeding. Hemostatic materials, by enhancing the natural cell-based coagulation response, are essential tools in modern and military medical practice for controlling bleeding, especially in emergency and surgical settings. Here, we report a new type of composite hemostatic material with two different aluminosilicate-based components, kaolin and zeolite, which synergistically work together in different stages of the coagulation cascade reactions.
View Article and Find Full Text PDFBlood Adv
June 2024
UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC.
Plasma kallikrein (PKa) is an important activator of factor XII (FXII) of the contact pathway of coagulation. Several studies have shown that PKa also possesses procoagulant activity independent of FXII, likely through its ability to directly activate FIX. We evaluated the procoagulant activity of PKa using a mouse whole blood (WB) thrombin-generation (TG) assay.
View Article and Find Full Text PDFACS Omega
March 2024
Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States.
Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!