Electrophilic monoiodination of terminal alkenes.

Org Biomol Chem

University of Minnesota, Natural Resources Research Institute, 5013 Miller Trunk Highway, Duluth, MN 55811, USA.

Published: May 2013

An excess of elemental iodine in N,N-dimethylacetamide enables effective 3/iodanylium-de-hydronation of terminal alkenes with 3-iodopropene derivatives and hydrogen iodide formation within minutes at room temperature. The optimal molar ratio of iodine to substrate was decreased to 1 : 1 when hydrogen iodide formed was oxidized on a platinum anode. The electrolytic oxidation recovers iodine as a reagent and diminishes the hydrogen iodide inhibitory action to accomplish the monoiodination. The proposed reaction mechanism is based on kinetic measurements and quantum mechanics calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob27348bDOI Listing

Publication Analysis

Top Keywords

hydrogen iodide
12
terminal alkenes
8
electrophilic monoiodination
4
monoiodination terminal
4
alkenes excess
4
excess elemental
4
elemental iodine
4
iodine nn-dimethylacetamide
4
nn-dimethylacetamide enables
4
enables effective
4

Similar Publications

Purpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.

Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.

View Article and Find Full Text PDF

Balancing pH and Pressure Allows Boosting Voltage and Power Density for a H-I Redox Flow Battery.

ACS Appl Energy Mater

January 2025

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.

The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I) complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the synthesis of chiral tridentate pincer phosphines to a concise 1-2 step process, contrary to conventional, labor-intensive multistep procedures.

View Article and Find Full Text PDF

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!