Optimization of oil extraction from olive pomace using response surface methodology.

Food Sci Technol Int

Laboratory of Applied Chemistry and Chemical Engineering, University Mouloud Mammeri, Tizi-Ouzou, Algeria.

Published: August 2013

A statistical methodology, combining Plackett-Burman design with Box-Behnken design, was applied to optimize the oil extraction process from olive pomace using hexane as solvent. Plackett-Burman design was used in the first step to evaluate the effects of five independent variables on the oil extraction yield. Temperature of extraction, time of contact, solvent-to-solids ratio and moisture content of the olive pomace were identified as significant independent variables and were further optimized by using response surface methodology based on Box-Behnken design. The optimized conditions to maximize the yield were as follows: extraction temperature at 33 , contact time at 10 min, solvent-to-solids ratio at 3.5 mL/g and moisture content at 13%. The experimental value of the yield (5.98%) at these optimum conditions was found in perfect agreement with the value predicted by model (5.80%).

Download full-text PDF

Source
http://dx.doi.org/10.1177/1082013212452476DOI Listing

Publication Analysis

Top Keywords

oil extraction
12
olive pomace
12
response surface
8
surface methodology
8
plackett-burman design
8
box-behnken design
8
independent variables
8
solvent-to-solids ratio
8
moisture content
8
extraction
5

Similar Publications

Argan (Argania spinosa (L.) Skeels) is an endangered agroforestry species known for producing one of most expensive and sought-after oils in the world. Argan forests are a suitable habitat for medfly (Ceratitis capitata).

View Article and Find Full Text PDF

It is imperative to recover the valuable components of spent HPCs. We have proposed a hydrometallurgical process and recovered 99.9% of V, 99.

View Article and Find Full Text PDF

Our objectives were to use a quantitative literature review to explore dietary and feed factors influencing apparent total-tract digestibility of dry matter (DMD), crude protein (CPD), neutral detergent fiber (NDFD), ether extract (EED), non-structural carbohydrates (NSCD), non-fiber carbohydrates (NFCD), and residual organic matter (rOMD) in equine diets, and to assess their contributions to digestible energy (DE) supplies. Data from 54 studies were modeled using linear mixed-effect regressions, with publication as a random effect to account for study variability. For each nutrient, five models were derived with explanatory variables including: dry matter intake (DMI; % BW/day) and DM (% as-fed), and dietary components (CP, organic matter, EE, NDF, acid detergent fiber, NSC, starch, and NFC as % of DM), and feed types (forage, non-forage fiber, legumes, cereal, and oil proportions).

View Article and Find Full Text PDF

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!