Although human cardiomyocytes (CMs) are capable of some cell division, this response is neither sufficient to repair damaged cardiac tissue nor efficient to compensate for pathological stress. Danio rerio (zebrafish) CMs have been shown to have high proliferative capability to completely repair hearts after injury; however, no reports have focused on their physiological and cellular response to cardiac overload stress. We hypothesized that forced excessive long-term cardiac overload stress would elicit a proliferative response similar to regenerative cardiac repair in zebrafish. We completed a 10-week forced fast-speed swimming exercise regimen, comparing exercised hearts to nonexercised controls for physiological function and histological evidence of cell proliferation. Our results indicate that exercised heart ventricles are 33% larger, yet exhibit no significant changes in cardiac physiological function as evaluated by the heart rate and the percent shortening fraction. We found 8% more CM nuclei per cross-sectional area within exercised ventricular tissue, indicating that cardiomegaly was not due to individual cell hypertrophy, but due to hyperplasia. This novel zebrafish cardiac stress model may be used to identify genes or proteins with therapeutic potential for treating cardiac stress pathologies, as well as molecules that could be used as initiators of cardiac cell proliferation in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559224PMC
http://dx.doi.org/10.1089/biores.2012.0201DOI Listing

Publication Analysis

Top Keywords

cardiac stress
12
cardiac
9
cardiac overload
8
overload stress
8
physiological function
8
cell proliferation
8
stress
6
adult zebrafish
4
zebrafish hearts
4
hearts efficiently
4

Similar Publications

Background: This article is dedicated to David Farrington who was a giant in criminology and, in particular, a pioneer in studying developmental pathways of delinquent and antisocial behaviour. Numerous studies followed his work. Systematic reviews of his and others' research described between two and seven (mainly 3-5) trajectories.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Adverse early-life experiences alter the regulation of major stress systems such as the hypothalamic-pituitary-adrenal (HPA) axis. Low early-life maternal care (MC) has repeatedly been related to blunted cortisol stress responses. Likewise, an acutely increased awareness of mortality (mortality salience [MS]) also has been shown to blunt cortisol responses.

View Article and Find Full Text PDF

Introduction: In the present study, we evaluated the impact of empagliflozin on serum levels of oxidative stress parameters in individuals with type 2 diabetes (T2DM) who also suffer from heart failure with Reduced Ejection Fraction (HFrEF).

Methods: In this prospective, single-center clinical trial, 80 patients with T2DM and HFrEF, stabilized on guideline-directed heart failure therapy and classified as New York Heart Association functional (NYHA) functional classes II or III, were randomized to receive either empagliflozin (10 mg/daily) or a matching placebo for a duration of 12 weeks. Serum levels of malondialdehyde (MDA), along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were measured at baseline and after the 12-week treatment period.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!