Antivenom antibody titers following administration of rattlesnake venom for antivenom production in horses are well documented; however, antivenom antibody titers following natural rattlesnake envenomation in horses are not. Antibody titers produced in response to the commercially available rattlesnake venom vaccine are also not published. Our study objectives were to measure antivenom antibody titers in rattlesnake-bitten horses and compare them to titers in horses vaccinated with the rattlesnake venom vaccine. Additionally, titers were compared in pregnant versus nonpregnant horses to assess the affect of pregnancy on vaccine response and were measured pre- and postsuckle in foals of vaccinated mares to detect passive transfer of vaccine immunoglobulins. Blood samples were collected from 16 rattlesnake-bitten horses. Thirty-six horses (11 pregnant mares, 12 nonpregnant mares, 13 geldings) were vaccinated using a Crotalus atrox venom toxoid vaccine. Blood was collected before administering each vaccination and 30 days following the third vaccination. Blood was collected from foals of vaccinated mares pre- and postsuckle. All serum was assayed for anti-Crotalus atrox venom antibodies using an enzyme-linked immunosorbent assay (ELISA). Rattlesnake-bitten horses had higher (P = 0.001) titers than vaccinated horses. There was no significant difference between titers in vaccinated pregnant versus nonpregnant horses. One mare had a positive titer at foaling, and the foals had positive postsuckle titers. Antivenom antibody titer development was variable following natural envenomation and vaccination, and vaccine-induced titers were lower than natural envenomation titers. Further studies are required to determine if natural or vaccine antivenom antibody titers reduce the effects of envenomation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647753 | PMC |
http://dx.doi.org/10.1128/CVI.00004-13 | DOI Listing |
Toxins (Basel)
December 2024
Poison Control Center, The University of Arizona College of Pharmacy, Tucson, AZ 85724, USA.
The onset, progression, and severity of pain following rattlesnake envenomation are highly variable between patients. Pain can be severe and persistent, seemingly refractory to opioid analgesics. The ability of antivenom to directly relieve pain has not been well studied.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.
View Article and Find Full Text PDFToxins (Basel)
December 2024
School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.
The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom.
View Article and Find Full Text PDFDiscov Med
December 2024
Emergency Department, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, Guizhou, China.
Background: To explore the mechanism of hyperbaric oxygen (HBO) intervention on acute lung injury secondary to snake venom poisoning and provide more toxicological and clinical evidence for venom poisoning.
Methods: Male Kunming mice (n = 96) were randomly divided into four groups: the control group which was not given any interventional treatments, venom group in which each mouse was injected with venom (1 mg/kg) through the tail vein, antivenom group in which each mouse was injected with anti- venom immediately after the model was successfully established, and HBO+antivenom group in which each mouse was given HBO treatment at 1 h, 5 h, 11 h and 23 h following the injection of antivenom. Lung tissues of mice were obtained and processed for the detection of the lung coefficient, the levels of inflammatory factors such as interleukin (IL)-6, IL-10 and IL-17, and the protein expression of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγt) and forkhead box P3 (FOXP3).
PLoS Negl Trop Dis
December 2024
Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.
Background: Bothrops venom consists primarily of metalloproteinase and phospholipase A2 toxins, which are responsible for the acute inflammatory, coagulant and hemorrhagic action following snakebite. The local effects of snakebite envenomation by Bothrops species are particularly prevalent yet poorly studied, but include pain, edema, erythema, blistering, bleeding, and ecchymosis.
Methods And Findings: In this study, we describe the dermatopathological findings observed in a series of 22 patients diagnosed with Bothrops envenomation treated in a tertiary hospital of Manaus, in the Brazilian Amazon.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!