The intracellular fate of internalized virus-receptor complexes is suspected of influencing the efficiency of virus infection. However, direct evidence of a link between infection and the fate of internalized virus has been difficult to obtain. To directly address this question, we generated human 293 cell lines stably expressing comparable cell surface levels of three different members of the somatostatin receptor family (SSTR) which have natural differences in intracellular trafficking. Utilizing a glycoprotein that recognizes SSTR, we found that distinctive receptor subtype-specific destinations correlated with observable differences in the level of infection. Infection via SSTR-2 and -3 is restricted at a point after receptor binding and endocytosis but prior to penetration into the host cytoplasm. In contrast, entry via SSTR-5 featured a slower internalization with greater dependence on cholesterol. Quantitative real-time PCR showed that virus bound to SSTR-5 was directed to an intracellular environment that allowed near-wild-type (WT) levels of penetration, possibly due to a more favorable complement of host cell proteases, whereas SSTR-2 and -3 directed virions to a degradative compartment in which cytosol penetration was less efficient. Taken together, the results support that the superior receptor capacity of SSTR-5 results from its internalization into a cellular compartment that is more favorable to the cytoplasmic penetration of viral cores and reverse transcription. They suggest that the intracellular destination of internalized complexes is an important characteristic of a virus receptor and may have exerted a selective pressure on the choice of an entry receptor during evolution of viral glycoproteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648180 | PMC |
http://dx.doi.org/10.1128/JVI.00398-13 | DOI Listing |
Water Res
January 2025
Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.
View Article and Find Full Text PDFDev Reprod
December 2024
Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea.
Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China.
Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!