Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559234 | PMC |
http://dx.doi.org/10.1089/biores.2012.9902 | DOI Listing |
Circ Res
December 2024
Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham. (Y.W., G.W., T.N., X.G., B.G., H.Z., A.G., M.R.-G., J.M.R., L.Y., J.Z.).
Background: When human induced pluripotent stem cells (hiPSCs) that CCND2-OE (overexpressed cyclin-D2) were differentiated into cardiomyocytes (hiPSC-CMs) and administered to the infarcted hearts of immunodeficient mice, the cells proliferated after administration and repopulated >50% of the scar. Here, we knocked out human leukocyte antigen class I and class II expression in hiPSC-CMs (hiPSC-CMs) to reduce the cells' immunogenicity and then assessed the therapeutic efficacy of hiPSC-CMs for the treatment of myocardial infarction.
Methods: hiPSC-CM and wild-type hiPSC-CM (hiPSC-CM) spheroids were differentiated in shaking flasks, purified, characterized, and intramyocardially injected into pigs after ischemia/reperfusion injury; control animals were injected with basal medium.
Acta Biomater
December 2024
Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA; Yale Stem Cell Center, 10 Amistad Street, New Haven, CT 06511, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA. Electronic address:
Induced pluripotent stem cells (iPSCs) hold great promise for the treatment of cardiovascular diseases through cell-based therapies, but these therapies require extensive preclinical testing that is best done in species-in-species experiments. Pigs are a good large animal model for these tests due to the similarity of their cardiovascular system to humans. However, a lack of adequate pig iPSCs (piPSCs) that are analogous to human iPSCs has greatly limited the potential usefulness of this model system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Pôle de chirurgie expérimentale et transplantation, Université catholique de Louvain, Brussels 1200, Belgium.
To be clinically efficient, beta cell replacement therapies such as pig islet xenotransplantation must ensure sufficient insulin secretion from grafted islets. While protection from host immune reaction is essential for islet engraftment and their subsequent functioning, intrinsic physiological properties of used cells are also a key factor. We have previously shown that islets with adenoviral-mediated expression of a dipeptidyl peptidase-resistant form of glucagon-like-peptide-1 (GLP-1) and a constitutively activated form of type 3 muscarinic receptor (M3R) in their beta cells have greatly improved insulin secretory response to glucose stimulation that is otherwise 4 to 10 times lower than human islets.
View Article and Find Full Text PDFBurns Trauma
October 2024
Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China.
Afr J AIDS Res
October 2024
The AIDS Support Organization (TASO), Kampala, Uganda.
This study aimed at assessing the experiences of people living with HIV who participated in an agricultural livelihood support initiative in selected districts of Uganda. The initiative, implemented from 2017 to 2018, involved the provision of agricultural inputs such as beans, cassava cuttings, goats, chickens, and pigs to participants. In-depth interviews were conducted with 37 people (28 women and 9 men) from the districts of Kampala, Masaka and Wakiso (specifically Entebbe) in central Uganda, who had participated in the project.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!