Exact solution of the Zwanzig-Lauritzen model of polymer crystallization under tension.

J Chem Phys

Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.

Published: March 2013

We solve a two-dimensional model for polymer chain folding in the presence of mechanical pulling force (f) exactly using equilibrium statistical mechanics. Using analytically derived expression for the partition function we determine the phase diagram for the model in the f-temperature (T) plane. A square root singularity in the susceptibility indicates a second order phase transition from a folded to an unfolded state at a critical force (fc) in the thermodynamic limit of infinitely long polymer chain. The temperature dependence of fc shows a reentrant phase transition, which is reflected in an increase in fc as T increases below a threshold value. As a result, for a range of f values, the unfolded state is stable at both low and high temperatures. The high temperature unfolded state is stabilized by entropy whereas the low temperature unfolded state is dominated by favorable energy. The exact calculation could serve as a benchmark for testing approximate theories that are used in analyzing single molecule pulling experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612122PMC
http://dx.doi.org/10.1063/1.4794154DOI Listing

Publication Analysis

Top Keywords

unfolded state
16
model polymer
8
polymer chain
8
phase transition
8
temperature unfolded
8
exact solution
4
solution zwanzig-lauritzen
4
zwanzig-lauritzen model
4
polymer crystallization
4
crystallization tension
4

Similar Publications

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.

View Article and Find Full Text PDF

Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration ( via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement.

View Article and Find Full Text PDF

Unlabelled: Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti- phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ∼50,000 cells from cultures of a human pathobiont, infected with a lytic bacteriophage.

View Article and Find Full Text PDF

Objective: Guided by Gottman's framework of marital stability and the ecological theories, the present study aims to understand the relationships between work-family spillover and marital stability within two levels of context-the relational and social cultural contexts.

Background: The relational context of marriage is manifested by spousal relationships-spousal support and strain, which would moderate the relationship between work-family spillover and marital stability. Identified relationships also unfold within sociocultural contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!