Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes-induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes-stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes-induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes-induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes-induced inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624774 | PMC |
http://dx.doi.org/10.1089/jmf.2012.2577 | DOI Listing |
Front Oral Health
December 2024
Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
Objectives: The increasing demand for alternatives to antibiotics against resistant bacteria has led to research on natural products. The aim of this study was to analyze the antimicrobial and antibiofilm activity of 16 Mediterranean herb extracts.
Materials And Methods: The extracts were analyzed using High Performance Thin Layer Chromatography.
Int J Environ Health Res
December 2024
National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia.
Recently essential oils (EOs) encapsulation is experiencing growing applications in agricultural and agri-food sector. Encapsulation is reported as safe environmental technology leading to a reduction of conventional insecticides use. This study concerns the assessment of fumigant toxicity and persistence of EO encapsulated in two cyclodextrins β-CD and HP-β-CD against larvae of the date moth, The retention capacity, encapsulation efficacy, loading capacity and release behavior of the two inclusion complexes were investigated.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece.
This study presents the synergistic application of ultrasound- and microwave-assisted extraction (UAE-MAE) as a novel and efficient method for recovering bioactive compounds from the medicinal plants oregano, rosemary, , and chamomile. Extraction parameters, including microwave (MW) power, ultrasound (US) power, and extraction time, were optimized using the response surface methodology (RSM), with ethanol as the solvent. Extracts were evaluated for total phenolic content (TPC) via the Folin-Ciocalteu method and antioxidant activity (IC50) using the DPPH assay.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy.
Rosemary ( Spenn. syn. L.
View Article and Find Full Text PDFJ AOAC Int
December 2024
Analytical and Advisory Services Division, Government Laboratory, 7/F, Ho Man Tin Government Offices, 88 Chung Hau Street, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region, China.
Background: Rosemary extracts are derived from the leaves of Rosmarinus officinalis and commonly employed as natural food preservative. They serve as natural antioxidants in food, preventing spoilage and extending shelf life.
Objective: This study aimed to develop a modified QuEChERS extraction with liquid chromatography tandem mass spectrometry for the analysis of rosemary extracts in food as sum of its markers Carnosol and Carnosic Acid.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!