Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bumelia sartorum (Sapotaceae) is used ethnomedicinally for treatment of several diseases, including diabetes mellitus. The aim of this work was to investigate the hypoglycemic effect of B. sartorum extracts, rich in polyphenolic compounds, and the possible mechanisms of action. Assessment of B. sartorum hypoglycemic activity was performed from the blood glucose level in normoglycemic mice after administration of the extract by oral gavage. The hypothesis that sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition could prolong the increase in cytoplasmic Ca2+ concentration, thus leading to an increase of insulin release was evaluated. The enzyme inhibition was measured by ATP hydrolysis using SERCA1 isolated from rabbit skeletal muscle. The total content of phenolic compounds was determined by the Folin-Ciocalteau method. The ethyl acetate (EtOAc) partition and F5 fraction obtained from B. sartorum, both of them rich in polyphenolics, were shown to have a hypoglycemic effect on normoglycemic mice, more significant than that of the known antidiabetic drug, glibenclamide used as a standard comparable compound. Both samples significantly inhibited SERCA activity. Different extracts of B. sartorum, rich in polyphenolic compounds, were able to reduce blood glucose in normoglycemic mice and inhibit SERCA activity. SERCA inhibition may be one of the possible mechanisms involved in glucose decrease.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!