Purpose: To develop a technique with clinical 3.0-T magnetic resonance (MR) imaging to delineate local contrast agent distribution in coronary artery walls for potential molecular MR imaging-guided local gene or drug therapy of atherosclerotic coronary artery disease.
Materials And Methods: This animal protocol was approved by the institutional animal care and use committee and was in compliance with the Guide for the Care and Use of Laboratory Animals. For in vitro confirmation, human arterial smooth muscle cells (SMCs) were used to determine capability of SMCs in uptake of motexafin gadolinium (MGd) and its optimal dose. For ex vivo evaluation, a 2-mL mixture of MGd and trypan blue was locally infused into coronary artery walls of six cadaveric pig hearts with MR monitoring and an MR imaging guidewire, surface coils, or both. For in vivo validation, the balloon catheter was placed into coronary arteries of seven living pigs, and the MGd and trypan blue mixture was infused into arterial walls with MR guidance. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of coronary artery walls were recorded by using different coils between pre- and postcontrast infusion, with subsequent histologic confirmation. Paired Student t tests were used to compare average SNRs and CNRs of arterial walls before and after contrast agent infusion with different coils.
Results: SMCs could take up MGd with the optimal concentration at 150 µmol/L. Average SNR with the MR imaging guidewire and surface coil combination was significantly higher than that with the MR imaging guidewire only or with surface coils only (P < .05), and average SNR and CNR of postinfusion MR imaging was significantly higher than that of preinfusion MR imaging (P < .05). Histologic analysis was used to confirm successful intracoronary infiltration of MGd and trypan blue within coronary artery walls.
Conclusion: MR imaging can be used to delineate locally infused contrast agent distribution in coronary artery walls. This establishes groundwork for development of molecular MR imaging-guided intracoronary therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721057 | PMC |
http://dx.doi.org/10.1148/radiol.13121451 | DOI Listing |
Pediatr Cardiol
January 2025
Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
We sought to evaluate the intracardiac morphology and associated cardiovascular anomalies in patients with double inlet right ventricle (DIRV) on multidetector CT angiography. A retrospective search of our departmental database was conducted from January 2014 to January 2023 to identify patients with a diagnosis of DIRV on CT angiography. The intracardiac anatomy and associated cardiovascular abnormalities were systematically evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
Experiencing a traumatic event may lead to Posttraumatic Stress Disorder (PTSD), including symptoms such as flashbacks and hyperarousal. Individuals suffering from PTSD are at increased risk of cardiovascular disease (CVD), but it is unclear why. This study assesses shared genetic liability and potential causal pathways between PTSD and CVD.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 167, Beilishi Road, Xicheng District, China.
Background: Heparin, an anticoagulant used in cardiac surgery, can result in heparin rebound (HR), where it returns postoperatively despite being neutralized with protamine. This study was designed to investigate the prevalence of HR in patients undergoing off-pump coronary artery bypass grafting (OPCAB) and evaluate the impact of HR on their short-term outcomes.
Methods: HR was defined by a 10% increase in activated coagulation time (ACT) following two hours of heparin neutralization with protamine, bleeding over 200 mL/h, and abnormal laboratory coagulation examination results.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!