A study of free radical chemistry: their role and pathophysiological significance.

Acta Biochim Pol

Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, UK.

Published: September 2013

Oxygen is one of the most important molecules on Earth mainly because of the biochemical symmetry of oxygenic photosynthesis and aerobic respiration that can maintain homeostasis within our planet's biosphere. Oxygen can also produce toxic molecules, reactive oxygen species (ROS). ROS play a dual role in biological systems, since they can be either harmful or beneficial to living systems. They can be considered a double-edged sword because at moderate concentrations, nitric oxide (NO•), superoxide anion, and related reactive oxygen species play an important role as regulatory mediators in signalling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and re-establish "redox homeostasis". On the other hand, overproduction of ROS has the potential to cause damage. In the recent decades, ROS has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases shows that oxidative stress is associated with the pathogenesis of diabetes mellitus, obesity, cancer, cardiovascular diseases, inflammation, ischaemia/reperfusion injury, obstructive sleep apnea, neurodegenerative disorders, hypertension and ageing.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
oxidative stress
8
study free
4
free radical
4
radical chemistry
4
chemistry role
4
role pathophysiological
4
pathophysiological significance
4
oxygen
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Platelet-rich plasma effects on in vitro cells derived from pediatric patients with andrological diseases.

Sci Rep

December 2024

Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy.

Undescended testis and testicular torsion represent two frequent andrological diseases that affect the pediatric age. Despite these testicular disorders having different causes, they both negatively influence fertility in adulthood mainly due to the accumulation of reactive oxygen species (ROS), which represents the primary molecular damage underlying their long-term effects. The gold standard of treatment for both pathologies is surgery; however, it cannot guarantee an optimal fertility outcome in all clinical cases, underscoring the need to identify effective adjuvant therapies that may target the augmented ROS levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!