The electrochemical performance of reduced graphite oxide (RGO) anchored with nano Sn particles, which are synthesized by a reduction method, is presented. The Sn nanoparticles are uniformly distributed on the surface of the RGO matrix and the size of the particles is approximately 5-10 nm. The uniform distribution effectively accommodates the volume expansion experienced by Sn particles during cycling. The observed electrochemical performance (97 % capacity retention) can be ascribed to the flexible RGO matrix with uniform distribution of Sn particles, which reduces the lithium-ion diffusion path lengths; therefore, the RGO matrix provides more stability to the Sn particles during cycling. Such studies on Sn nanoparticles anchored on RGO matrices have not been reported to date.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200970DOI Listing

Publication Analysis

Top Keywords

rgo matrix
12
reduced graphite
8
electrochemical performance
8
uniform distribution
8
particles cycling
8
rgo
5
particles
5
graphite oxide/nano
4
oxide/nano superior
4
superior composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!