A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated protein subcellular localization based on local invariant features. | LitMetric

Automated protein subcellular localization based on local invariant features.

Protein J

Department of Computer Science and Technology, Shanghai Normal University, Shanghai, 200234, China.

Published: March 2013

To understand the function of the encoded proteins, we need to be able to know the subcellular location of a protein. The most common method used for determining subcellular location is fluorescence microscopy which allows subcellular localizations to be imaged in high throughput. Image feature calculation has proven invaluable in the automated analysis of cellular images. This article proposes a novel method named LDPs for feature extraction based on invariant of translation and rotation from given images, the nature which is to count the local difference features of images, and the difference features are given by calculating the D-value between the gray value of the central pixel c and the gray values of eight pixels in the neighborhood. The novel method is tested on two image sets, the first set is which fluorescently tagged protein was endogenously expressed in 10 sebcellular locations, and the second set is which protein was transfected in 11 locations. A SVM was trained and tested for each image set and classification accuracies of 96.7 and 92.3 % were obtained on the endogenous and transfected sets respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-013-9478-1DOI Listing

Publication Analysis

Top Keywords

subcellular location
8
novel method
8
difference features
8
tested image
8
automated protein
4
subcellular
4
protein subcellular
4
subcellular localization
4
localization based
4
based local
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!