Critical closing pressure during intracranial pressure plateau waves.

Neurocrit Care

Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK.

Published: June 2013

Background: Critical closing pressure (CCP) denotes a threshold of arterial blood pressure (ABP) below which brain vessels collapse and cerebral blood flow ceases. Theoretically, CCP is the sum of intracranial pressure (ICP) and arterial wall tension (WT). The aim of this study is to describe the behavior of CCP and WT during spontaneous increases of ICP, termed plateau waves, in order to quantify ischemic risk.

Methods: To calculate CCP, we used a recently introduced multi-parameter method (CCPm) which is based on the modulus of cerebrovascular impedance. CCP is derived from cerebral perfusion pressure, ABP, transcranial Doppler estimators of cerebrovascular resistance and compliance, and heart rate. Arterial WT was estimated as CCPm-ICP. The clinical data included recordings of ABP, ICP, and transcranial Doppler-based blood flow velocity from 38 events of ICP plateau waves, recorded in 20 patients after head injury.

Results: Overall, CCPm increased significantly from 51.89 ± 8.76 mmHg at baseline ICP to 63.31 ± 10.83 mmHg at the top of the plateau waves (mean ± SD; p < 0.001). Cerebral arterial WT decreased significantly during plateau waves by 34.3% (p < 0.001), confirming their vasodilatatory origin. CCPm did not exhibit the non-physiologic negative values that have been seen with traditional methods for calculation, therefore rendered a more plausible estimation of CCP.

Conclusions: Rising CCP during plateau waves increases the probability of cerebral vascular collapse and zero flow when the difference: ABP-CCP (the "collapsing margin") becomes zero or negative.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-013-9830-5DOI Listing

Publication Analysis

Top Keywords

plateau waves
24
critical closing
8
closing pressure
8
intracranial pressure
8
pressure abp
8
blood flow
8
pressure
6
plateau
6
waves
6
ccp
6

Similar Publications

Delays in chemotherapy and radiotherapy of breast cancer during COVID-19 pandemic.

J Infect Public Health

January 2025

Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.

Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.

View Article and Find Full Text PDF

Aim: To describe the use of invasive mechanical ventilation core strategies, adjuvant treatments and the occurrence of barotrauma and prolonged ventilation in ICU patients with COVID-19 in Denmark, retrospectively.

Methods: All ICUs admitting COVID-19 patients in Denmark from 10 March 2020 to 2 April 2021 were invited to participate. All patients with COVID-19 who received invasive mechanical ventilation were included and data was retrospectively collected from electronic patient records.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays.

Sci Rep

December 2024

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.

Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.

View Article and Find Full Text PDF

This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!