Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rac1, a member of the Rho family of GTPases, regulates diverse cellular functions, including cytoskeleton reorganization and cell migration. F-box proteins are major subunits within the Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases that recognize specific substrates for ubiquitination. The role of F-box proteins in regulating Rac1 stability has not been studied. Mouse lung epithelial (MLE12) cells were used to investigate Rac1 stability and cell migration. Screening of an F-box protein library and in vitro ubiquitination assays identified FBXL19, a relatively new member of the F-box protein family that targets Rac1 for its polyubiquitination and proteasomal degradation. Overexpression of FBXL19 decreased both Rac1 active and inactive forms and significantly reduced cellular migration. Protein kinase AKT-mediated phosphorylation of Rac1 at serine(71) was essential for FBXL19-mediated Rac1 ubiquitination and depletion. Lysine(166) within Rac1 was identified as a polyubiquitination acceptor site. Rac1(S71A) and Rac1(K166R) mutant proteins were resistant to FBXL19-mediated ubiquitination and degradation. Further, ectopically expressed FBXL19 reduced cell migration in Rac1-overexpressing cells (P<0.01, Rac1 cells vs. FBXL19+Rac1 cells), but not in Rac1 lysine(166) mutant-overexpressing cells. FBXL19 diminished formation of the migratory leading edge. Thus, SCF(FBXL19) targets Rac1 for its disposal, a process regulated by AKT. These findings provide the first evidence of an F-box protein targeting a small G protein for ubiquitination and degradation to modulate cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688740 | PMC |
http://dx.doi.org/10.1096/fj.12-223099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!