Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

Sci Rep

Advanced Technology Research Laboratories, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan.

Published: April 2014

Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603303PMC
http://dx.doi.org/10.1038/srep01501DOI Listing

Publication Analysis

Top Keywords

heat
9
tilted multilayer
8
bi05sb15te3/ni tube
8
heat exchanger
8
bifunctional thermoelectric
4
tube
4
thermoelectric tube
4
tube tilted
4
multilayer material
4
material alternative
4

Similar Publications

Both irreversible electroporation (IRE) and radiofrequency ablation (RFA) are viable ablation methods for localized treatment of liver tumors. We conducted a meta-analysis to access the efficacy and safety of IRE and RFA in liver cancer treatment. Clinical studies on IRE and RFA for the treatment of liver cancer were collected from PubMed and CNKI until June 2023.

View Article and Find Full Text PDF

The Impact of on plant heat and drought tolerance.

Front Plant Sci

December 2024

International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.

In recent years, the global rise in temperatures has led to drought and heat becoming major environmental stresses that limit plant growth. Previous research has demonstrated the potential of in augmenting plant stress resistance. However, specific studies on its effects and underlying mechanisms in cuttings of , and Planch are relatively limited.

View Article and Find Full Text PDF

Deciphering heat wave effects on wheat grain: focusing on the starch fraction.

Front Plant Sci

December 2024

LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.

Wheat is an essential staple food, and its production and grain quality are affected by extreme temperature events. These effects are even more relevant considering the increasing food demand for a growing world population and the predicted augmented frequency of heat waves. This study investigated the impact of simulated heat wave (HW) conditions imposed during grain filling on starch granule characteristics, endosperm ultrastructure, and transcriptomic modulation of genes involved in starch synthesis and degradation.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Current therapies do not adequately resolve this problem and focus only on the optimal level of blood glucose for patients. Ferroptosis plays an important role in diabetes mellitus and cardiovascular diseases.

View Article and Find Full Text PDF

Thermodynamics and transport in molten chloride salts and their mixtures.

Phys Chem Chem Phys

December 2024

School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!