The fungal pathogen Candida glabrata encodes for a β-carbonic anhydrase (CA, EC 4.2.1.1), CgNce103, recently discovered. Only anions have been investigated as CgNce103 inhibitors up until now. Here we report the first sulfonamides inhibition study of this enzyme. Simple sulfonamides showed weak or moderate CgNce103 inhibitory properties, whereas acetazolamide, and a series of 4-substituted ureido-benzene-sulfonamides, sulfamates and sulfamides showed effective CgNce103 inhibitory properties, with KIs in the range of 4.1-115 nM, being also ineffective as human CA II inhibitors. As there is significant resistance of C. glabrata clinical isolates to many classical antifungal agents, inhibition of the β-CA from this organism may allow an interesting means of controlling the pathogen growth, eventually leading to antifungals with a novel mechanism of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.02.092DOI Listing

Publication Analysis

Top Keywords

candida glabrata
8
sulfamates sulfamides
8
cgnce103 inhibitory
8
inhibitory properties
8
carbonic anhydrase
4
anhydrase inhibitors
4
inhibitors inhibition
4
inhibition β-class
4
β-class enzyme
4
enzyme pathogenic
4

Similar Publications

Background And Purpose: infections in India have shifted, with an increase in the incidence rate of invasive candidiasis, particularly due to non- species. The central nervous system infections by are sparsely reported and more understanding and research is needed regarding these infections.

Case Report: This study reported an unusual case of meningitis in a middle-aged female with pulmonary tuberculosis and newly diagnosed acquired immunodeficiency syndrome with a low cluster of differentiation 4 count (12 cells/mm).

View Article and Find Full Text PDF

Background And Objectives: Understanding the epidemiology of species among cancer patients is crucial for preventing invasive infections. This study aimed to identify species and assess risk factors among cancer patients receiving chemotherapy in Birjand, eastern Iran.

Materials And Methods: The samples were obtained from the oral cavity of 140 patients and the initial identification of species was carried out through fungal cultures.

View Article and Find Full Text PDF

Evaluation of Fifteen 5,6-Dihydrotetrazolo[1,5-]quinazolines Against : Integrating In Vitro Studies, Molecular Docking, QSAR, and In Silico Toxicity Assessments.

J Fungi (Basel)

November 2024

Department of Biosciences and Biotechnologies, Graduate School of Bioresources and Bioenvironment Sciences, Kyushu University, 744 W5-674, Motooka Nishi-ku, Fukuoka 819-0395, Japan.

(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.

View Article and Find Full Text PDF

In this study, metagenomic analysis was employed to investigate the bacterial communities in the Muan tidal mudflat of the Republic of Korea. We used metagenomic analysis to identify the microbial community in tidal soil dominated by Proteobacteria. From this environment, the bacterial strain, sp.

View Article and Find Full Text PDF

is the second most common cause of invasive candidiasis and is widely known to have reduced susceptibility to fluconazole relative to many other spp. Upc2A is a transcription factor that regulates ergosterol biosynthesis gene expression under conditions of sterol stress such as azole drug treatment or hypoxia. Through an microevolution experiment, we found that loss-of-function mutants of the ATF/CREB transcription factor suppresses the fluconazole hyper-susceptibility of the ∆ mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!