Interactions between proteins and material or cellular surfaces are able to trigger protein aggregation in vitro and in vivo. The human insulin peptide segment LVEALYL is able to accelerate insulin aggregation in the presence of hydrophobic surfaces. We show that this peptide needs to be previously adsorbed on a hydrophobic surface to induce insulin aggregation. Moreover, the study of different mutant peptides proves that its sequence is less important than the secondary structure of the adsorbed peptide on the surface. Indeed, these pro-aggregative peptides act by providing stable β-sheets to incoming insulin molecules, thereby accelerating insulin adsorption locally and facilitating the conformational changes required for insulin aggregation. Conversely, a peptide known to form α-helices on hydrophobic surfaces delays insulin aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2012.11.036 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain.
Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy.
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Family Medicine and Community Health, UMass Chan Medical School, Worcester, MA 01655, USA.
/: This systematic review and meta-analysis aimed to investigate the effect of prebiotics, alone or as part of synbiotics, on cardiometabolic parameters in polycystic ovary syndrome (PCOS) women. : Databases, including PubMed, Scopus, ISI Web of Science, Embase, and the Cochrane Central Register of Controlled Trials, were searched for relevant randomized-controlled trials (RCTs) until 12 December 2024. Changes in mean ± standard deviations were extracted and combined using a random-effects model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!