Hippocampal excitability is increased in aged mice.

Exp Neurol

Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada.

Published: September 2013

Aging is known to be associated with a high risk of developing seizure disorders. Currently, the mechanisms underlying this increased seizure susceptibility are not fully understood. Several previous studies have shown a loss of subgroups of GABAergic inhibitory interneurons in the hippocampus of aged rodents, yet the network excitability intrinsic to the aged hippocampus remains to be elucidated. The aim of this study is to examine age-dependent changes of hippocampal network activities in young adult (3-5 months), aging (16-18 months), and aged (24-28 months) mice. We conducted intracranial electroencephalographic (EEG) recordings in free-moving animals and extracellular recordings in hippocampal slices in vitro. EEG recordings revealed frequent spikes in aging and aged mice but only occasionally in young adults. These EEG spikes were suppressed following diazepam administration. Spontaneous field potentials with large amplitudes were frequently observed in hippocampal slices of aged mice but rarely in slices from young adults. These spontaneous field potentials originated from the CA3 area and their generation was dependent upon the excitatory glutamatergic activity. We therefore postulate that hippocampal network excitability is increased in aged mice and that such hyperactivity may be relevant to the increased seizure susceptibility observed in aged subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2013.03.012DOI Listing

Publication Analysis

Top Keywords

aged mice
16
excitability increased
8
aged
8
increased aged
8
increased seizure
8
seizure susceptibility
8
network excitability
8
hippocampal network
8
eeg recordings
8
hippocampal slices
8

Similar Publications

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.

View Article and Find Full Text PDF

Background: Diabetes often causes diabetic nephropathy (DN), a serious long-term complication. It is characterized by chronic proteinuria, hypertension, and kidney function decline, can progress to end-stage renal disease, lowering patients' quality of life and lifespan. Inflammation and apoptosis are key to DN development.

View Article and Find Full Text PDF

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!