Recently, we identified the structurally related homeoproteins EGAM1, EGAM1N, and EGAM1C in both preimplantation mouse embryos and mouse embryonic stem (ES) cells. These EGAM1 homeoproteins act as positive or negative regulators of differentiation and cell growth in mouse ES cells, such that these proteins are considered transcriptional regulators. In this study, we investigated their nuclear localization and identified the amino acid residues crucial for the nuclear translocation of EGAM1 and EGAM1C. When expressed exogenously in pluripotent ES cells and somatic NIH3T3 cells, all EGAM1 homeoproteins localized to the nucleus. Analysis using the web-based tool PSORTII predicted a potential nuclear localization signal (NLS) motif, RKDLIRSWFITQRHR, in the homeodomain shared by EGAM1 and EGAM1C. The introduction of mutations, such as mutations from K or R, both basic amino acid residues, to A, in this potential NLS resulted in significant impairment of the nuclear localization of both EGAM1 and EGAM1C. In contrast, GFP fusion proteins of all the full-length EGAM1 homeoproteins failed to localize to the nucleus. These results, when taken together, suggest that basic amino acid residues in the common homeodomain of EGAM1 and EGAM1C and the intact structures of the EGAM1 homeoproteins contribute, at least in part, to the nuclear localization of these proteins in mouse ES cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2013.02.007 | DOI Listing |
J Biosci Bioeng
August 2013
Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
J Biosci Bioeng
September 2012
Laboratory for Advanced Animal Cell Technology, Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
Embryonic stem (ES) cells have been considered as a valuable renewable source of materials in regenerative medicine. Recently, we identified the homeoprotein EGAM1 both in preimplantation mouse embryos and mouse ES cells. Expression of the Egam1 transcript and its encoded protein was detectable in differentiating mouse ES cells, while it was almost undetectable in undifferentiated cells.
View Article and Find Full Text PDFReproduction
February 2011
Departments of Biotechnology Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
The mouse Crxos gene encodes three structurally related homeoproteins, EGAM1, EGAM1N, and EGAM1C, as transcription and splicing variants. Recently, we identified the functions of EGAM1 and EGAM1N in the regulation of differentiation in mouse embryonic stem cells. However, the function of EGAM1C remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!