Background: Electrical biopsy illustrates a tissue's electrical properties by electrical impedance spectroscopy. However, electrical biopsy parameters are different from conventional morphological-based examinations. The correlation between electrical biopsy and the morphological observation has not been checked. Considering the tissue responses to injury, extracellular resistance should be most sensitive with the accumulation of fluid in tissue, and it is expected to increase the ratio of optical low staining area on histological images. In this study, we calculated the ratio of optical low staining area of sampled histological images and compared with the results of electrical biopsy to verify the hypothesis of that the extracellular resistance of electrical biopsy most highly correlates with the ratio of optical low staining area on histological images.

Methods: The irradiated intestinal tissues of rats after different latent period were used for study. The sampled tissues were measured by electrical impedance spectroscopy for electrical biopsy and the microscopic images were acquired. The sampled histological images were transformed into the Hue-Saturation-Density (HSD) colour model to decouple the stain density. The ratio of optical low staining area on histological images was computed to quantify the morphological changes. The results were related to the parameters from electrical biopsy according to three element circuit model by Spearman's rank correlation test.

Results: The ratio of optical low staining area varied as well as the tissue's electrical parameters. The extracellular resistance (Re) and intracellular resistance (Ri) by electrical biopsy tended to increase with the ratio of low staining area decreasing. The membrane capacitance (Cm) by electrical biopsy tended to increase with the ratio of optical low staining area increasing. The extracellular resistance (Re) of electrical biopsy was the parameter most highly correlated with the ratio of optical low staining area with a correlation coefficient of -0.757 (p < 0.001).

Conclusions: The results of this report confirm the hypothesis and support the idea that electrical biopsy results reflect the changes in tissues seen in conventional histological findings in a sense of conventional histological knowledge, and this approach may have a great potential for augmenting the pathological diagnosis of tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618212PMC
http://dx.doi.org/10.1186/1475-925X-12-23DOI Listing

Publication Analysis

Top Keywords

electrical biopsy
44
low staining
36
staining area
36
ratio optical
32
optical low
32
extracellular resistance
20
resistance electrical
16
histological images
16
electrical
15
increase ratio
12

Similar Publications

Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography (EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible.

View Article and Find Full Text PDF

Learnable color space conversion and fusion for stain normalization in pathology images.

Med Image Anal

December 2024

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China. Electronic address:

Variations in hue and contrast are common in H&E-stained pathology images due to differences in slide preparation across various institutions. Such stain variations, while not affecting pathologists much in diagnosing the biopsy, pose significant challenges for computer-assisted diagnostic systems, leading to potential underdiagnosis or misdiagnosis, especially when stain differentiation introduces substantial heterogeneity across datasets from different sources. Traditional stain normalization methods, aimed at mitigating these issues, often require labor-intensive selection of appropriate templates, limiting their practicality and automation.

View Article and Find Full Text PDF

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Integrin_K Channel_Complexes (IKCs), are implicated in neurodevelopment and cause developmental and epileptic encephalopathy (DEE) through mechanisms that were poorly understood. Here, we investigate the function of neocortical IKCs formed by voltage-gated potassium (Kv) channels Kcnb1 and α5β5 integrin dimers in wild-type (WT) and homozygous knock-in (KI) Kcnb1 mouse model of DEE. Kcnb1 mice suffer from severe cognitive deficit and compulsive behavior.

View Article and Find Full Text PDF

Pulsed Field Ablation (PFA) is a new ablation method being rapidly adopted for treatment of atrial fibrillation, which shows advantages in safety and efficiency over radiofrequency and cryo-ablation. In this study, we used an in vivo swine model (10 healthy and 5 with chronic myocardial infarct) for ventricular PFA, collecting intracardiac electrograms, electro-anatomical maps, native T1-weighted and late gadolinium enhancement MRI, gross pathology, and histology. We used 1000-1500 V pulses, with 1-16 pulse trains to vary PFA dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!