The seminal concept proposed by Sir Harold Himsworth more than 75 years ago that a large number of patients with diabetes were 'insulin insensitive', now termed insulin resistance, has now expanded to include several endocrine syndromes, namely those of glucocorticoid excess, and growth hormone excess and deficiency. Synthetic glucocorticoids are increasingly used to treat a wide variety of chronic diseases, whereas the beneficial effects of recombinant growth hormone replacement therapy in children and adults with growth hormone deficiency have now been well-recognized for over 25 years. However, clinical and experimental studies have established that increased circulating levels of glucocorticoids and growth hormone can also lead to worsening of insulin resistance, glucose intolerance, overt diabetes mellitus and cardiovascular disease. Improved understanding of the physiological 24-h rhythmicity of glucocorticoid and growth hormone secretion and its influence on the dawn phenomenon and the Staub-Trauggot effect has therefore led to renewed interest in studies on the mechanisms of insulin resistance induced by exogenous administration of glucocorticoids and growth hormone in humans. In this review, we describe the physiological events that result from the presence of resistance to insulin action at the level of skeletal muscle, adipose tissue, and liver, describe the known mechanisms of glucocorticoid- and growth hormone-mediated insulin resistance, and provide an update of the contributions of glucocorticoids and growth hormone to understanding the pathophysiology of insulin resistance and its effects on several endocrine syndromes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dme.12184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!