Single-stranded 50-mer, 100-mer, and 150-mer DNAs were immobilized on a surface, and force-based atomic force microscopy (AFM) was employed to examine their behavior. A complementary 20-mer probe DNA on an AFM tip was used for the measurements. High-resolution maps were generated, and relevant parameters, including the force, stretching distance, unbinding probability, cluster size, and degree of distortion, were analyzed. Due to thermal drift, the cluster shape became increasingly distorted as the scan speed was decreased and as the map area was reduced. The cluster radius increased with the number of base (N), and the radius was proportional to N(0.6) (r = 0.977) and N(0.53) (r = 0.991). Due to the effect of the pulling angle, the apparent values of the stretching distance and the unbinding force decreased as the AFM probe was moved away from the center position; these values can be described as a function of sin θ.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac3037848DOI Listing

Publication Analysis

Top Keywords

force-based atomic
8
atomic force
8
force microscopy
8
stretching distance
8
distance unbinding
8
mapping surface-immobilized
4
surface-immobilized dna
4
dna force-based
4
force
4
microscopy single-stranded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!