Selective separation of CO2 is becoming one of the key technologies in the (petro-) chemical industry. This study focuses on the adsorption and separation of CO2 from CH4 on a new low-silica (LS) type of the eight-membered ring KFI zeolite. A series of alkali (Li, Na, K) and alkaline-earth (Mg, Ca, Sr) exchanged samples of the new LS KFI were synthesized and characterized. LS Li-KFI showed the largest pore volume, whereas LS Na-KFI and LS K-KFI were inaccessible for Argon at 87 K. Adsorption of CO2 at 303 K demonstrated the dominant quadrupolar interaction on alkali-exchanged LS KFI samples. LS Li-KFI showed the largest capacities upon high pressure isotherm measurements of CO2 (4.8 mmol/g), CH4 (2.6 mmol/g), and N2 (2.2 mmol/g) up to 40 bar at 303 K. The performance of the new LS KFI was compared to a KFI sample (ZK-5) with a higher Si/Al ratio. Isotherm measurements and dynamic breakthrough experiments demonstrated that ZK-5 samples show larger working capacities for CO2/CH4 separations at low pressure. Li-ZK-5 and Na-ZK-5 show the highest capacities and high selectivities (similar to benchmark 13X).

Download full-text PDF

Source
http://dx.doi.org/10.1021/la400352rDOI Listing

Publication Analysis

Top Keywords

separation co2
12
adsorption separation
8
si/al ratio
8
li-kfi largest
8
capacities high
8
isotherm measurements
8
kfi
6
co2
5
co2 kfi
4
kfi zeolites
4

Similar Publications

Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO adsorption capacity of the composite and improve its CO/N separation selectivity.

View Article and Find Full Text PDF

ZIF-67-derived NiCoO hollow nanocages coupled with g-CN nanosheets as Z-scheme photocatalysts for enhancing CO reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124 China. Electronic address:

Photocatalytic CO reduction technology plays a significant role in the energy and environmental sectors, highlighting the necessity for developing high-efficiency and stable catalysts. In this study, a novel photocatalyst, xNiCoO/CN (x = 1, 3, and 5 wt%), was synthesized by depositing zeolitic imidazolate framework-67 (ZIF-67)-derived nickel cobaltate (NiCoO) hollow nanocages onto porous graphitic carbon nitride (g-CN, CN) nanosheets for photocatalytic CO reduction. Under visible light irradiation, the resulting 3NiCoO/CN photocatalyst demonstrated exceptional CO yields of up to 2879.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

CS bonds mediated rapid charge transfer in hm-CN/CdS heterostructure for efficient photocatalytic CO reduction.

J Colloid Interface Sci

January 2025

School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China. Electronic address:

The quest for stable and high-performance photocatalysts is pivotal in advancing the field of photocatalytic CO reduction. Traditional single-component semiconductors are often impeded by their inability to concurrently achieve a broad light absorption spectrum, efficient separation of photogenerated charge carriers, and enduring stability, thereby constraining their photocatalytic efficacy. In this study, we introduce an innovative hm-CN/CdS heterojunction that broadens the light absorption spectrum and significantly enhances the separation efficiency of photogenerated charge carriers.

View Article and Find Full Text PDF

Designing cellulose based biochars for CO separation using molecular simulations.

Sci Rep

January 2025

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

This study investigates the pyrolysis mechanism of cellulose using reactive molecular dynamics simulations to prepare biochars for CO separation applications. Six biochars with densities ranging from 0.160 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!