Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability.

Proc Natl Acad Sci U S A

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China.

Published: April 2013

Suppressor of variegation 3-9 homolog 1 (SUV39H1), a histone methyltransferase, catalyzes histone 3 lysine 9 trimethylation and is involved in heterochromatin organization and genome stability. However, the mechanism for regulation of the enzymatic activity of SUV39H1 in cancer cells is not yet well known. In this study, we identified SET domain-containing protein 7 (SET7/9), a protein methyltransferase, as a unique regulator of SUV39H1 activity. In response to treatment with adriamycin, a DNA damage inducer, SET7/9 interacted with SUV39H1 in vivo, and a GST pull-down assay confirmed that the chromodomain-containing region of SUV39H1 bound to SET7/9. Western blot using antibodies specific for antimethylated SUV39H1 and mass spectrometry demonstrated that SUV39H1 was specifically methylated at lysines 105 and 123 by SET7/9. Although the half-life and localization of methylated SUV39H1 were not noticeably changed, the methyltransferase activity of SUV39H1 was dramatically down-regulated when SUV39H1 was methylated by SET7/9. Consequently, H3K9 trimethylation in the heterochromatin decreased significantly, which, in turn, led to a significant increase in the expression of satellite 2 (Sat2) and α-satellite (α-Sat), indicators of heterochromatin relaxation. Furthermore, a micrococcal nuclease sensitivity assay and an immunofluorescence assay demonstrated that methylation of SUV39H1 facilitated genome instability and ultimately inhibited cell proliferation. Together, our data reveal a unique interplay between SET7/9 and SUV39H1--two histone methyltransferases--that results in heterochromatin relaxation and genome instability in response to DNA damage in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619320PMC
http://dx.doi.org/10.1073/pnas.1216596110DOI Listing

Publication Analysis

Top Keywords

heterochromatin relaxation
12
genome instability
12
suv39h1
11
methylation suv39h1
8
relaxation genome
8
activity suv39h1
8
cancer cells
8
dna damage
8
suv39h1 methylated
8
set7/9
7

Similar Publications

Nanosecond Molecular Motion in pHP1α Liquid-Liquid Phase Separation Captured by Solid-State NMR.

J Phys Chem Lett

January 2025

Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.

The relationship among protein structure, function, and dynamics is fundamental to biological activity, particularly in more complex biomolecular systems. Solid-state and solution-state NMR techniques offer powerful means to probe these dynamics across various time scales. However, standard assumptions about molecular motion are often challenged in phase-separated systems like phosphorylated heterochromatin protein 1 alpha (pHP1α), which exhibit both solid- and solution-like characteristics.

View Article and Find Full Text PDF

Tauopathies are a group of neurodegenerative diseases characterized by the accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in neuronal/glial cells. Besides hyperphosphorylation of tau protein, aberrant heterochromatin loss and translation dysfunction have emerged as other important aspects contributing to the disease pathogenesis. We have recently reported that tissue-specific downregulation of insulin signaling or its growth-promoting downstream sub-branch effectively reinstates the tau-mediated overactivated insulin pathway, and restricts pathogenic tau hyperphosphorylation and aggregate formation.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic mechanisms allow cells to change and adapt without changing their DNA.
  • Scientists studied fission yeast to see how these changes happen and found that certain proteins can shift over time to help cells adapt to stress.
  • When the stress is gone, cells remember how to respond better in the future, which could help us understand things like drug resistance and illnesses.
View Article and Find Full Text PDF

DNA damage is induced by both endogenous and exogenous factors. Repair of DNA double-strand break (DSB), a serious damage that threatens genome stability, decreases with senescence. However, the molecular mechanisms underlying the decline in DNA repair capacity during senescence remain unclear.

View Article and Find Full Text PDF

Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA.

Sci Rep

February 2024

Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia.

Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!